User:Jhurley/sandbox

From Enviro Wiki
Revision as of 19:25, 23 June 2020 by Jhurley (talk | contribs)
Jump to: navigation, search
Equation 1.            ω = (KHRX π rHRX2 iHRX)(KA bA iA)


Equation 1.            wave = (KHRX π rHRX2 iHRX)(KA bA iA)


Table 1. Potential reactive media types and target groundwater contaminants for an HRX Well
Reactive Media Potential Target Groundwater Contaminants
Zero valent iron (ZVI)
Bimetallics (e.g., ZVI + Pd, Pt, or Ni)
Chlorinated solvents (CVOCs), nitrate, perchlorate, energetics, chromium, arsenic
Granulated activated carbon (GAC)
Organosilicates
CVOCs, Poly- and Perfluoroalkyl substances (PFASs), hydrocarbons, halomethanes
Sustained Release Oxidants CVOCs, 1,4-dioxane, hydrocarbons,
polyaromatic hydrocarbons (PAHs), phenolic compounds
Biodegradable particulate organic carbon
(e.g., mulch)
CVOCs, nitrate, perchlorate, energetics
Ion exchange resins PFAS, brines
Phosphates (e.g., apatite) Lead, uranium, other metals and radionuclides
Limestone, lime, magnesium oxide Low pH, acid rock drainage
Barium sulfate (barite) Radium
Iron sulfide Chromium, high pH
Zeolites Ammonium, radionuclides, PFAS

wave

In all cases, iHRX < iA, but for short wells, iHRX << iA, and wave is small. However, for long wells (several hundred feet or more), the difference between the hydraulic gradients diminishes. When used as a screening calculation, iHRX and iA can be assumed to be approximately equal in many cases. By inspection of Equation 1, it is clear that wave increases as the permeability contrast between the aquifer and reactive media increases, and