Difference between revisions of "User:Debra Tabron/sandbox"
Debra Tabron (talk | contribs) |
Debra Tabron (talk | contribs) |
||
Line 1: | Line 1: | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
− | !style="background-color:#CEE0F2;"| | + | !style="background-color:#CEE0F2;"| Energetic!! style="background-color:#CEE0F2;"| Aqueous Solubility!! style="background-color:#CEE0F2;"| Formula!! style="background-color:#CEE0F2;"| Reference |
|- | |- | ||
− | | | + | | TNT|| 100|| C<sub>7</sub>H<sub>5</sub>N<sub>3</sub>O<sub>6</sub>|| Ro et al., 1996<ref>Ro, K.S., Venugopal, A., Adrian, D.D., Constant, D., Qaisi, K., Valsaraj, K.T., Thibodeaux, L.J. and Roy, D., 1996. Solubility of 2, 4, 6-trinitrotoluene (TNT) in water. Journal of Chemical & Engineering Data, 41(4), pp.758-761. [http://dx.doi.org/10.1021/je950322w doi: 10.1021/je950322w]</ref> |
|- | |- | ||
− | | | + | | RDX|| 60|| C<sub>3</sub>H<sub>6</sub>N<sub>6</sub>O<sub>6</sub>|| Banerjee et al., 1980<ref>Banerjee, S., Yalkowsky, S.H. and Valvani, C., 1980. Water solubility and octanol/water partition coefficients of organics. Limitations of the solubility-partition coefficient correlation. Environmental Science & Technology, 14(10), pp.1227-1229. [http://dx.doi.org/10.1021/es60170a013 doi: 10.1021/es60170a013]</ref> |
|- | |- | ||
− | | | + | | HMX|| 4.6|| C<sub>4</sub>H<sub>8</sub>N<sub>8</sub>O<sub>8</sub>|| Monteil-Rivera et al., 2004<ref>Monteil-Rivera, F., Paquet, L., Deschamps, S., Balakrishnan, V.K., Beaulieu, C. and Hawari, J., 2004. Physico-chemical measurements of CL-20 for environmental applications: Comparison with RDX and HMX. Journal of Chromatography A, 1025(1), pp.125-132. [http://dx.doi.org/10.1016/j.chroma.2003.08.060 doi: 10.1016/j.chroma.2003.08.060]</ref> |
|- | |- | ||
− | | | + | | 2,4-DNT|| 280|| C<sub>7</sub>H<sub>6</sub>N<sub>2</sub>O<sub>4</sub>|| Rosenblatt et al., 1991<ref>Rosenblatt, D.H., Burrows, E.P., Mitchell, W.R. and Parmer, D.L., 1991. Organic explosives and related compounds. In Anthropogenic Compounds (pp. 195-234). Springer Berlin Heidelberg. [http://dx.doi.org/10.1007/978-3-540-46757-1_4 doi:10.1007/978-3-540-46757-1_4]</ref> |
|- | |- | ||
− | | | + | | NG|| 1500 @ 20°C|| C<sub>3</sub>H<sub>5</sub>N<sub>3</sub>O<sub>9</sub>|| Yinon, 1999<ref>Yinon, J., 1999. Forensic and environmental detection of explosives. John Wiley & Sons. [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471983713.html ISBN: 978-0-471-98371-2]</ref> |
|- | |- | ||
− | | | + | | NQ|| 2600±100|| CH<sub>4</sub>N<sub>4</sub>O<sub>2</sub>|| Haag et al., 1990<ref>Haag, W.R., Spanggord, R., Mill, T., Podoll, R.T., Chou, T.W., Tse, D.S. and Harper, J.C., 1990. Aquatic environmental fate of nitroguanidine.Environmental Toxicology and Chemistry, 9(11), pp.1359-1367. [http://dx.doi.org/10.1002/etc.5620091105 doi:10.1002/etc.5620091105]</ref> |
|- | |- | ||
− | | | + | | DNAN|| 276; 213|| C<sub>7</sub>H<sub>6</sub>N<sub>2</sub>O<sub>5</sub>|| Boddu et al., 2008<ref>Boddu, V.M., Abburi, K., Maloney, S.W. and Damavarapu, R., 2008. Thermophysical properties of an insensitive munitions compound, 2, 4-dinitroanisole. Journal of Chemical & Engineering Data, 53(5), pp.1120-1125. [http://dx.doi.org/10.1021/je7006764 doi: 10.1021/je7006764]</ref>; Hawari et al., 2015<ref>Hawari, J., Monteil-Rivera, F., Perreault, N.N., Halasz, A., Paquet, L., Radovic-Hrapovic, Z., Deschamps, S., Thiboutot, S. and Ampleman, G., 2015. Environmental fate of 2, 4-dinitroanisole (DNAN) and its reduced products. Chemosphere, 119, pp.16-23. [http://dx.doi.org/10.1016/j.chemosphere.2014.05.047 doi:10.1016/j.chemosphere.2014.05.047]</ref> |
|- | |- | ||
− | | | + | | NTO|| 16642|| C<sub>2</sub>N<sub>4</sub>O<sub>3</sub>|| Spear et al., 1989<ref>Spear, R.J., Louey, C.N. and Wolfson, M.G., 1989. A preliminary assessment of 3-nitro-1, 2, 4-triazol-5-one (NTO) as an insensitive high explosive (No. MRL-TR-89-18). Materials Research Labs (Australia). [http://www.environmentalrestoration.wiki/images/f/fe/Spear-1989-Prelim_Assessment_of_NTO.pdf Report pdf]</ref> |
|- | |- | ||
− | | | + | | AP|| 217000|| NH<sub>4</sub>ClO<sub>4</sub>|| Motzer 2001<ref>Motzer, W.E., 2001. Perchlorate: problems, detection, and solutions. Environmental Forensics, 2(4), pp.301-311. [http://dx.doi.org/10.1006/enfo.2001.0059 doi:10.1006/enfo.2001.0059]</ref> |
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
− | |||
− | |||
− |
Revision as of 19:43, 19 October 2016
Energetic | Aqueous Solubility | Formula | Reference |
---|---|---|---|
TNT | 100 | C7H5N3O6 | Ro et al., 1996[1] |
RDX | 60 | C3H6N6O6 | Banerjee et al., 1980[2] |
HMX | 4.6 | C4H8N8O8 | Monteil-Rivera et al., 2004[3] |
2,4-DNT | 280 | C7H6N2O4 | Rosenblatt et al., 1991[4] |
NG | 1500 @ 20°C | C3H5N3O9 | Yinon, 1999[5] |
NQ | 2600±100 | CH4N4O2 | Haag et al., 1990[6] |
DNAN | 276; 213 | C7H6N2O5 | Boddu et al., 2008[7]; Hawari et al., 2015[8] |
NTO | 16642 | C2N4O3 | Spear et al., 1989[9] |
AP | 217000 | NH4ClO4 | Motzer 2001[10] |
- ^ Ro, K.S., Venugopal, A., Adrian, D.D., Constant, D., Qaisi, K., Valsaraj, K.T., Thibodeaux, L.J. and Roy, D., 1996. Solubility of 2, 4, 6-trinitrotoluene (TNT) in water. Journal of Chemical & Engineering Data, 41(4), pp.758-761. doi: 10.1021/je950322w
- ^ Banerjee, S., Yalkowsky, S.H. and Valvani, C., 1980. Water solubility and octanol/water partition coefficients of organics. Limitations of the solubility-partition coefficient correlation. Environmental Science & Technology, 14(10), pp.1227-1229. doi: 10.1021/es60170a013
- ^ Monteil-Rivera, F., Paquet, L., Deschamps, S., Balakrishnan, V.K., Beaulieu, C. and Hawari, J., 2004. Physico-chemical measurements of CL-20 for environmental applications: Comparison with RDX and HMX. Journal of Chromatography A, 1025(1), pp.125-132. doi: 10.1016/j.chroma.2003.08.060
- ^ Rosenblatt, D.H., Burrows, E.P., Mitchell, W.R. and Parmer, D.L., 1991. Organic explosives and related compounds. In Anthropogenic Compounds (pp. 195-234). Springer Berlin Heidelberg. doi:10.1007/978-3-540-46757-1_4
- ^ Yinon, J., 1999. Forensic and environmental detection of explosives. John Wiley & Sons. ISBN: 978-0-471-98371-2
- ^ Haag, W.R., Spanggord, R., Mill, T., Podoll, R.T., Chou, T.W., Tse, D.S. and Harper, J.C., 1990. Aquatic environmental fate of nitroguanidine.Environmental Toxicology and Chemistry, 9(11), pp.1359-1367. doi:10.1002/etc.5620091105
- ^ Boddu, V.M., Abburi, K., Maloney, S.W. and Damavarapu, R., 2008. Thermophysical properties of an insensitive munitions compound, 2, 4-dinitroanisole. Journal of Chemical & Engineering Data, 53(5), pp.1120-1125. doi: 10.1021/je7006764
- ^ Hawari, J., Monteil-Rivera, F., Perreault, N.N., Halasz, A., Paquet, L., Radovic-Hrapovic, Z., Deschamps, S., Thiboutot, S. and Ampleman, G., 2015. Environmental fate of 2, 4-dinitroanisole (DNAN) and its reduced products. Chemosphere, 119, pp.16-23. doi:10.1016/j.chemosphere.2014.05.047
- ^ Spear, R.J., Louey, C.N. and Wolfson, M.G., 1989. A preliminary assessment of 3-nitro-1, 2, 4-triazol-5-one (NTO) as an insensitive high explosive (No. MRL-TR-89-18). Materials Research Labs (Australia). Report pdf
- ^ Motzer, W.E., 2001. Perchlorate: problems, detection, and solutions. Environmental Forensics, 2(4), pp.301-311. doi:10.1006/enfo.2001.0059