Difference between revisions of "User:Jhurley/sandbox"

From Enviro Wiki
Jump to: navigation, search
 
(808 intermediate revisions by the same user not shown)
Line 1: Line 1:
==PFAS Transport and Fate==
+
==Assessing Vapor Intrusion (VI) Impacts in Neighborhoods with Groundwater Contaminated by Chlorinated Volatile Organic Chemicals (CVOCs)==  
The transport and fate of Per- and Polyfluoroalkyl Substances (PFAS) in the environment is controlled by the nature of the PFAS source, characteristics of the individual PFAS, and environmental conditions where the PFAS are present. Transport, partitioning, and transformation are the primary processes controlling PFAS fate in the environment. PFAS compounds can also be taken up by both plants and animals, and in some cases, bioaccumulate through the food chain.
+
The VI Diagnosis Toolkit<ref name="JohnsonEtAl2020">Johnson, P.C., Guo, Y., Dahlen, P., 2020.  The VI Diagnosis Toolkit for Assessing Vapor Intrusion Pathways and Mitigating Impacts in Neighborhoods Overlying Dissolved Chlorinated Solvent Plumes.  ESTCP Project ER-201501, Final Report. [https://serdp-estcp.mil/projects/details/a0d8bafd-c158-4742-b9fe-5f03d002af71 Project Website]&nbsp;&nbsp; [[Media: ER-201501.pdf | Final Report.pdf]]</ref> is a set of tools that can be used individually or in combination to assess vapor intrusion (VI) impacts at one or more buildings overlying regional-scale dissolved chlorinated solvent-impacted groundwater plumes. The strategic use of these tools can lead to confident and efficient neighborhood-scale VI pathway assessments.
Understanding PFAS transport and fate is necessary for evaluating the potential risk from a PFAS release and for predictions about PFAS occurrence, migration, and persistence, and about the potential vectors for exposure. This knowledge is important for site characterization, identification of potential sources of PFAS to the site, development of an appropriate conceptual site model (CSM), and selection and predicted performance of remediation strategies.  
 
  
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
'''Related Article(s): '''
+
'''Related Article(s):'''
* [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)]]
 
  
'''Contributor(s): '''
+
*[[Vapor Intrusion (VI)]]
Dr. Hunter Anderson and Dr. Mark L. Brusseau
+
*[[Vapor Intrusion – Sewers and Utility Tunnels as Preferential Pathways]]
  
'''Key Resource(s): '''
+
'''Contributor(s):'''  
*[https://pfas-1.itrcweb.org/wp-content/uploads/2020/04/ITRC_PFAS_TechReg_April2020.pdf  Per- and Polyfluoroalkyl Substances (PFAS), PFAS-1. ITRC 2020.]<ref name="ITRC2020">Interstate Technology and Regulatory Council (ITRC), 2020. Technical/Regulatory Guidance: Per- and Polyfluoroalkyl Substances (PFAS), PFAS-1. ITRC, PFAS Team, Washington DC. [https://pfas-1.itrcweb.org/wp-content/uploads/2020/04/ITRC_PFAS_TechReg_April2020.pdf  Free Download from ITRC].&nbsp;&nbsp; [[Media: ITRC_PFAS-1.pdf | Report.pdf]]</ref>
 
  
*[[Media: Brusseau2018manuscript.pdf | Assessing the Potential Contributions of Additional Retention Processes to PFAS Retardation in the Subsurface. Brusseau 2018 (manuscript).]]<ref name="Brusseau2018">Brusseau, M.L., 2018. Assessing the Potential Contributions of Additional Retention Processes to PFAS Retardation in the Subsurface. Science of the Total Environment, 613-614, pp. 176-185. [https://doi.org/10.1016/j.scitotenv.2017.09.065 DOI: 10.1016/j.scitotenv.2017.09.065]&nbsp;&nbsp; [[Media: Brusseau2018manuscript.pdf | Author’s Manuscript]]</ref>
+
*Paul C. Johnson, Ph.D.
 +
*Paul Dahlen, Ph.D.
 +
*Yuanming Guo, Ph.D.
  
==Introduction==
+
'''Key Resource(s):'''
The transport and fate of [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)]] is a rapidly evolving field of science, with many questions that are not yet resolved.  Much of the currently available information is based on a few well-studied PFAS compounds.  However, there is a large number and variety of PFAS with a wide range of physical and chemical characteristics that affect their behavior in the environment. The transport and fate of some PFAS could differ significantly from the compounds studied to date. Nevertheless, information about the behavior of some PFAS in the environment can be ascertained from the results of currently available research.
 
  
PFAS transport and fate in the environment is controlled by the nature of the PFAS source, characteristics of the individual PFAS, and environmental conditions where the PFAS are present.  Perfluoroalkyl acids (PFAAs) (see [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) | PFAS]] for nomenclature) are strong acids and are anionic in the environmentally-relevant pH range.  They are extremely persistent in the environment and do not degrade or transform under typical environmental conditions. Polyfluoroalkyl substances (see [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) | PFAS]] for nomenclature) include compounds that have the potential to degrade to PFAAs.  These compounds are commonly referred to as PFAA precursors or just ‘precursors’.  Because some polyfluoroalkyl substances can degrade into PFAA via biotic or abiotic degradation pathways, PFAAs are sometimes referred to as “terminal PFAS” or “terminal degradation products”.
+
*The VI Diagnosis Toolkit for Assessing Vapor Intrusion Pathways and Impacts in Neighborhoods Overlying Dissolved Chlorinated Solvent Plumes, ESTCP Project ER-201501, Final Report<ref name="JohnsonEtAl2020"/>
The most important molecular properties controlling PFAA transport are the carbon chain length and functional moieties of the headgroups (e.g., sulfonate, carboxylate). The molecular properties of PFAA precursors are more varied, with different carbon chain lengths, headgroups and ionic states<ref name="Buck2011">Buck, R.C., Franklin, J., Berger, U., Conder, J.M., Cousins, I.T., de Voogt, P., Jensen, A.A., Kannan, K., Mabury, S.A., and van Leeuwen, S.P.J., 2011. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integrated Environmental Assessment and Management, 7(4): pp. 513-541.  [ https://doi.org/10.1002/ieam.258  DOI: 10.1002/ieam.258]&nbsp;&nbsp; [https://setac.onlinelibrary.wiley.com/doi/epdf/10.1002/ieam.258 Open Access Article]</ref><ref name="Wang2017">Wang, Z., DeWitt, J.C., Higgins, C.P., and Cousins, I.T., 2017. A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? Environmental Science and Technology, 51(5), pp. 2508-2518. American Chemical Society.  [https://doi.org/10.1021/acs.est.6b04806 DOI: 10.1021/acs.est.6b04806]&nbsp;&nbsp; [https://pubs.acs.org/doi/pdf/10.1021/acs.est.6b04806 Free Download from ACS]</ref> (see [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) | PFAS]]). All of these properties can influence transport and fate of PFAA precursors in the environment.
 
  
Important environmental characteristics include the nature of the source (mode of input into the environment), the length of time that the source was active, and the magnitude of the input, as well as precipitation and infiltration rates, depth to groundwater, surface water and groundwater flow rates and interactions, prevailing atmospheric conditions, the properties of the porous-media (e.g., soil and sediment) and aqueous solution, microbiological factors, and the presence of additional fluid phases such as air and non-aqueous phase liquids [[Wikipedia: Non-aqueous phase liquid | (NAPLs)]] in the vadose zone and water-saturated source.  In the subsurface, soil characteristics (texture, organic carbon content, clay mineralogy, metal-oxide content, solid surface area, surface charge, and exchange capacity) and solution characteristics (pH, redox potential, major ion chemistry, and co-contaminants) can influence PFAS transport and fate.
+
*CPM Test Guidelines: Use of Controlled Pressure Method Testing for Vapor Intrusion Pathway Assessment, ESTCP Project ER-201501, Technical Report<ref name="JohnsonEtAl2021">Johnson, P.C., Guo, Y., Dahlen, P., 2021.  CPM Test Guidelines: Use of Controlled Pressure Method Testing for Vapor Intrusion Pathway Assessment.  ESTCP ER-201501, Technical Report. [https://serdp-estcp.mil/projects/details/a0d8bafd-c158-4742-b9fe-5f03d002af71 Project Website]&nbsp;&nbsp; [[Media: ER-201501_Technical_Report.pdf | Technical_Report.pdf]]</ref>     
  
==PFAS Transport and Fate Processes==
+
*VI Diagnosis Toolkit User Guide, ESTCP Project ER-201501<ref name="JohnsonEtAl2022">Johnson, P.C., Guo, Y., and Dahlen, P., 2022. VI Diagnosis Toolkit User Guide, ESTCP ER-201501, User Guide[https://serdp-estcp.mil/projects/details/a0d8bafd-c158-4742-b9fe-5f03d002af71 Project Website]&nbsp;&nbsp; [[Media: ER-201501_User_Guide.pdf | User_Guide.pdf]]</ref>
[[File:AndersonBrusseau1w2Fig1.png | thumb | 600px | Figure 1. Illustration of PFAS partitioning and transformation processes. Source: D. Adamson, GSI, used with permission.]]
 
Transport, partitioning, and transformation are the primary processes controlling PFAS fate in the environment (Figure 1). PFAS compounds can also be taken up by both plants and animals, and in some cases, bioaccumulate through the food chainHowever, PFAS uptake and bioaccumulation is not discussed in this article (see “Environmental Concern” section of [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)]]).
 
  
* '''Transport:''' PFAS can be transported substantial distances in the atmosphere<ref name="Ahrens2012">Ahrens, L., Harner, T., Shoeib, M., Lane, D.A. and Murphy, J.G., 2012. Improved Characterization of Gas–Particle Partitioning for Per- and Polyfluoroalkyl Substances in the Atmosphere Using Annular Diffusion Denuder Samplers. Environmental Science and Technology, 46(13), pp. 7199-7206. [https://doi.org/10.1021/es300898s DOI: 10.1021/es300898s]&nbsp;&nbsp; Free download available from [https://www.researchgate.net/profile/Tom_Harner/publication/225046057_Improved_Characterization_of_Gas-Particle_Partitioning_for_Per-_and_Polyfluoroalkyl_Substances_in_the_Atmosphere_Using_Annular_Diffusion_Denuder_Samplers/links/5cc730c4299bf12097893fdc/Improved-Characterization-of-Gas-Particle-Partitioning-for-Per-and-Polyfluoroalkyl-Substances-in-the-Atmosphere-Using-Annular-Diffusion-Denuder-Samplers.pdf ResearchGate].</ref>, surface water<ref name="Taniyasu2013">Taniyasu, S., Yamashita, N., Moon, H.B., Kwok, K.Y., Lam, P.K., Horii, Y., Petrick, G. and Kannan, K., 2013.  Does wet precipitation represent local and regional atmospheric transportation by perfluorinated alkyl substances? Environment International, 55, pp. 25-32. [https://doi.org/10.1016/j.envint.2013.02.005 DOI: 10.1016/j.envint.2013.02.005]</ref>, soil<ref name="Braunig2017">Bräunig, J., Baduel, C., Heffernan, A., Rotander, A., Donaldson, E. and Mueller, J.F., 2017. Fate and redistribution of perfluoroalkyl acids through AFFF-impacted groundwater. Science of the Total Environment, 596, pp. 360-368. [https://doi.org/10.1016/j.scitotenv.2017.04.095 DOI: 10.1016/j.scitotenv.2017.04.095]</ref>, and groundwater<ref name="Weber2017">Weber, A.K., Barber, L.B., LeBlanc, D.R., Sunderland, E.M. and Vecitis, C.D., 2017. Geochemical and Hydrologic Factors Controlling Subsurface Transport of Poly- and Perfluoroalkyl Substances, Cape Cod, Massachusetts. Environmental Science and Technology, 51(8), pp. 4269-4279. [https://doi.org/10.1021/acs.est.6b05573 DOI: 10.1021/acs.est.6b05573]&nbsp;&nbsp; [https://bgc.seas.harvard.edu/assets/weber2017_final.pdf Free Download]</ref>. The primary mechanisms controlling PFAS transport are [[Wikipedia:Advection | advection]] and [[Wikipedia:Dispersive_mass_transfer | dispersion]], similar to other dissolved compounds. For additional information on transport in groundwater, see [[Advection and Groundwater Flow]] and [[Dispersion and Diffusion]].
+
==Background==
 +
[[File:ChangFig2.png | thumb | 400px| Figure 1. Example of instrumentation used for OPTICS monitoring.]]
 +
[[File:ChangFig1.png | thumb | 400px| Figure 2. Schematic diagram illustrating the OPTICS methodology. High resolution in-situ data are integrated with traditional discrete sample analytical data using partial least-square regression to derive high resolution chemical contaminant concentration data series.]]
 +
Nationwide, the liability due to contaminated sediments is estimated in the trillions of dollars. Stakeholders are assessing and developing remedial strategies for contaminated sediment sites in major harbors and waterways throughout the U.S. The mobility of contaminants in surface water is a primary transport and risk mechanism<ref>Thibodeaux, L.J., 1996. Environmental Chemodynamics: Movement of Chemicals in Air, Water, and Soil, 2nd Edition, Volume 110 of Environmental Science and Technology: A Wiley-Interscience Series of Texts and Monographs. John Wiley & Sons, Inc. 624 pages. ISBN: 0-471-61295-2</ref><ref>United States Environmental Protection Agency (USEPA), 2005. Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. Office of Superfund Remediation and Technology Innovation Report, EPA-540-R-05-012. [[Media: 2005-USEPA-Contaminated_Sediment_Remediation_Guidance.pdf | Report.pdf]]</ref><ref>Lick, W., 2008. Sediment and Contaminant Transport in Surface Waters. CRC Press. 416 pages. [https://doi.org/10.1201/9781420059885 doi: 10.1201/9781420059885]</ref>; therefore, long-term monitoring of both particulate- and dissolved-phase contaminant concentration prior to, during, and following remedial action is necessary to document remedy effectiveness. Source control and total maximum daily load (TMDL) actions generally require costly manual monitoring of dissolved and particulate contaminant concentrations in surface water. The magnitude of cost for these actions is a strong motivation to implement efficient methods for long-term source control and remedial monitoring.  
  
* '''Partitioning:''' Partitioning of PFAS between the mobile and immobile phases is one of the most important processes controlling the rate of migration in the environment. The primary mobile phases are typically air and water.  Relatively immobile phases include stream sediments, soils, aquifer material, NAPLs, and interfaces between different phases (air-water, NAPL-water).  Partitioning of a significant portion of the PFAS mass into an immobile phase increases the amount of material stored in the system and slows the apparent rate of migration in the mobile phase – a phenomenon that has been observed in field metadata<ref name="Anderson2019">Anderson, R.H., Adamson, D.T. and Stroo, H.F., 2019. Partitioning of poly-and perfluoroalkyl substances from soil to groundwater within aqueous film-forming foam source zones. Journal of Contaminant Hydrology, 220, pp. 59-65. [https://doi.org/10.1016/j.jconhyd.2018.11.011 DOI: 10.1016/j.jconhyd.2018.11.011]&nbsp;&nbsp; Manuscript available from [https://www.researchgate.net/profile/Hans_Stroo3/publication/329227107_Partitioning_of_poly-_and_perfluoroalkyl_substances_from_soil_to_groundwater_WITHIN_aqueous_film-forming_foam_source_zones/links/5e56996b299bf1bdb83e2f69/Partitioning-of-poly-and-perfluoroalkyl-substances-from-soil-to-groundwater-WITHIN-aqueous-film-forming-foam-source-zones.pdf ResearchGate]</ref>.
+
Traditional surface water monitoring requires mobilization of field teams to manually collect discrete water samples, send samples to laboratories, and await laboratory analysis so that a site evaluation can be conducted. These traditional methods are well known to have inherent cost and safety concerns and are of limited use (due to safety concerns and standby requirements for resources) in capturing the effects of episodic events (e.g., storms) that are important to consider in site risk assessment and remedy selection. Automated water samplers are commercially available but still require significant field support and costly laboratory analysis. Further, automated samplers may not be suitable for analytes with short hold-times and temperature requirements.  
  
* '''Transformation:''' Transformation of PFAS is controlled by the molecular structure of the individual compounds. Perfluorinated compounds, including PFAAs, are resistant to abiotic and biotic transformation reactions under typical conditions and highly persistent in the environment. In contrast, precursors can be transformed by both abiotic and biotic processes, often resulting in the production of so-called “terminal” PFAA daughter products.
+
Optically-based characterization of surface water contaminants is a cost-effective alternative to traditional discrete water sampling methods. Unlike discrete water sampling, which typically results in sparse data at low resolution, and therefore, is of limited use in determining mass loading, OPTICS (OPTically-based In-situ Characterization System) provides continuous data and allows for a complete understanding of water quality and contaminant transport in response to natural processes and human impacts<ref name="ChangEtAl2019"/><ref name="ChangEtAl2018"/><ref name="ChangEtAl2024"/><ref>Bergamaschi, B.A., Fleck, J.A., Downing, B.D., Boss, E., Pellerin, B., Ganju, N.K., Schoellhamer, D.H., Byington, A.A., Heim, W.A., Stephenson, M., Fujii, R., 2011. Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements. Limnology and Oceanography, 56(4), pp. 1355-1371. [https://doi.org/10.4319/lo.2011.56.4.1355 doi: 10.4319/lo.2011.56.4.1355]&nbsp;&nbsp; [[Media: BergamaschiEtAl2011.pdf | Open Access Article]]</ref><ref>Bergamaschi, B.A., Fleck, J.A., Downing, B.D., Boss, E., Pellerin, B.A., Ganju, N.K., Schoellhamer, D.H., Byington, A.A., Heim, W.A., Stephenson, M., Fujii, R., 2012. Mercury Dynamics in a San Francisco Estuary Tidal Wetland: Assessing Dynamics Using In Situ Measurements. Estuaries and Coasts, 35, pp. 1036-1048. [https://doi.org/10.1007/s12237-012-9501-3 doi: 10.1007/s12237-012-9501-3]&nbsp;&nbsp; [[Media: BergamaschiEtAl2012a.pdf | Open Access Article]]</ref><ref>Bergamaschi, B.A., Krabbenhoft, D.P., Aiken, G.R., Patino, E., Rumbold, D.G., Orem, W.H., 2012. Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary. Environmental Science and Technology, 46(3), pp. 1371-1378. [https://doi.org/10.1021/es2029137 doi: 10.1021/es2029137]&nbsp;&nbsp; [[Media: BergamaschiEtAl2012b.pdf | Open Access Article]]</ref>. The OPTICS tool integrates commercial off-the-shelf ''in situ'' aquatic sensors (Figure 1), periodic discrete surface water sample collection, and a multi-parameter statistical prediction model<ref name="deJong1993">de Jong, S., 1993. SIMPLS: an alternative approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems, 18(3), pp. 251-263. [https://doi.org/10.1016/0169-7439(93)85002-X doi: 10.1016/0169-7439(93)85002-X]</ref><ref name="RosipalKramer2006">Rosipal, R. and Krämer, N., 2006. Overview and Recent Advances in Partial Least Squares, In: Subspace, Latent Structure, and Feature Selection: Statistical and Optimization Perspectives Workshop, Revised Selected Papers (Lecture Notes in Computer Science, Volume 3940), Springer-Verlag, Berlin, Germany. pp. 34-51. [https://doi.org/10.1007/11752790_2 doi: 10.1007/11752790_2]</ref> to provide high temporal and/or spatial resolution characterization of surface water chemicals of potential concern (COPCs) (Figure 2).
  
==Transport and Partitioning in the Atmosphere==
+
==Technology Overview==
Air serves as a transport media for PFAS, particularly for uncharged polyfluorinated PFAS. Airborne PFAS transport contributes to global distribution and can lead to localized deposition to soils and surface water in the vicinity of emission sources<ref name="Simcik2005">Simcik, M.F. and Dorweiler, K.J., 2005. Ratio of Perfluorochemical Concentrations as a Tracer of Atmospheric Deposition to Surface Waters. Environmental Science and Technology, 39(22), pp. 8678-8683. [https://doi.org/10.1021/es0511218 DOI: 10.1021/es0511218]&nbsp;&nbsp; Free download available from [https://www.researchgate.net/profile/Matt_Simcik/publication/7444956_Ratio_of_Perfluorochemical_Concentrations_as_a_Tracer_of_Atmospheric_Deposition_to_Surface_Waters/links/5f035861299bf1881603c3be/Ratio-of-Perfluorochemical-Concentrations-as-a-Tracer-of-Atmospheric-Deposition-to-Surface-Waters.pdf ResearchGate]</ref><ref name="Prevedouros2006">Prevedouros, K., Cousins, I.T., Buck, R.C. and Korzeniowski, S.H., 2006. Sources, Fate and Transport of Perfluorocarboxylates. Environmental Science and Technology, 40(1), pp. 32-44. [https://doi.org/10.1021/es0512475 DOI: 10.1021/es0512475]&nbsp;&nbsp; Free download available from [https://d1wqtxts1xzle7.cloudfront.net/39945519/Sources_Fate_and_Transport_of_Perfluoroc20151112-1647-19vcvbf.pdf?1447365456=&response-content-disposition=inline%3B+filename%3DSources_Fate_and_Transport_of_Perfluoroc.pdf&Expires=1605023809&Signature=Z6KqgaDN6lKdAazoe6qoASoCtVystG5i~5EnrTcb~qMg3xZPz4O49Kghh62WmMzqEKE788~6EwrnlBVo9o6cM0hjf2vymFYxg4mx-eSIOEonfFjk6RonSaWp5gRbA6m~SNjwsjaKXID3OQyWIlLVpUd2LzAdI5rLGFA~gIXXtNPyCArLuGn-kbPYUIcBUg5TIkTZ6TDLXF~ujmzK9tNv~55UYabsJL4pmwIGC2sNGkEyJrYMfU577fbactdrmQXTJH7XbgpfDSfd4-xWkDZTdvVf~TypDDqUCZdtCkY8wINdpqtfe1KEzLrAj7rxxALAHUYxlVbPB45XTkLAGe5qww__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA  Academia]</ref><ref name="Ahrens2011">Ahrens, L., Shoeib, M., Harner, T., Lane, D.A., Guo, R. and Reiner, E.J., 2011. Comparison of Annular Diffusion Denuder and High Volume Air Samplers for Measuring Per- and Polyfluoroalkyl Substances in the Atmosphere." Analytical Chemistry, 83(24), pp. 9622-9628. [https://doi.org/10.1021/ac202414w DOI: 10.1021/ac202414w]&nbsp;&nbsp; Free download available from [https://www.informea.org/sites/default/files/imported-documents/UNEP-POPS-POPRC11FU-SUBM-PFOA-Canada-2-20151211.En.pdf Informea].</ref><ref name="Rauert2018">Rauert, C., Shoieb, M., Schuster, J.K., Eng, A. and Harner, T., 2018. Atmospheric concentrations and trends of poly-and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network. Environmental Pollution, 238, pp. 94-102. [https://doi.org/10.1016/j.envpol.2018.03.017 DOI: 10.1016/j.envpol.2018.03.017]&nbsp;&nbsp; Open access article available from [https://reader.elsevier.com/reader/sd/pii/S0269749117352521?token=4C770E6E8AEDB0B3BA6A1D5B2C20ED5385F81823612551FA3380AAA1DA7A978F9CB36834AF6B7F91F35FF57E32013252 ScienceDirect]&nbsp;&nbsp; [[Media:Rauert2018.pdf | Report.pdf]]</ref>.  
+
The principle behind OPTICS is based on the relationship between optical properties of natural waters and the particles and dissolved material contained within them<ref>Boss, E. and Pegau, W.S., 2001. Relationship of light scattering at an angle in the backward direction to the backscattering coefficient. Applied Optics, 40(30), pp. 5503-5507. [https://doi.org/10.1364/AO.40.005503 doi: 10.1364/AO.40.005503]</ref><ref>Boss, E., Twardowski, M.S., Herring, S., 2001. Shape of the particulate beam spectrum and its inversion to obtain the shape of the particle size distribution. Applied Optics, 40(27), pp. 4884-4893. [https://doi.org/10.1364/AO.40.004885 doi:10/1364/AO.40.004885]</ref><ref>Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., Stramski, D., 2003. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnology and Oceanography, 48(2), pp. 843-859. [https://doi.org/10.4319/lo.2003.48.2.0843 doi: 10.4319/lo.2003.48.2.0843]&nbsp;&nbsp; [[Media: BabinEtAl2003.pdf | Open Access Article]]</ref><ref>Coble, P., Hu, C., Gould, R., Chang, G., Wood, M., 2004. Colored dissolved organic matter in the coastal ocean: An optical tool for coastal zone environmental assessment and management. Oceanography, 17(2), pp. 50-59. [https://doi.org/10.5670/oceanog.2004.47 doi: 10.5670/oceanog.2004.47]&nbsp;&nbsp; [[Media: CobleEtAl2004.pdf | Open Access Article]]</ref><ref>Sullivan, J.M., Twardowski, M.S., Donaghay, P.L., Freeman, S.A., 2005. Use of optical scattering to discriminate particle types in coastal waters. Applied Optics, 44(9), pp. 1667–1680. [https://doi.org/10.1364/AO.44.001667 doi: 10.1364/AO.44.001667]</ref><ref>Twardowski, M.S., Boss, E., Macdonald, J.B., Pegau, W.S., Barnard, A.H., Zaneveld, J.R.V., 2001. A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. Journal of Geophysical Research: Oceans, 106(C7), pp. 14,129-14,142. [https://doi.org/10.1029/2000JC000404 doi: 10/1029/2000JC000404]&nbsp;&nbsp; [[Media: TwardowskiEtAl2001.pdf | Open Access Article]]</ref><ref>Chang, G.C., Barnard, A.H., McLean, S., Egli, P.J., Moore, C., Zaneveld, J.R.V., Dickey, T.D., Hanson, A., 2006. In situ optical variability and relationships in the Santa Barbara Channel: implications for remote sensing. Applied Optics, 45(15), pp. 3593–3604. [https://doi.org/10.1364/AO.45.003593 doi: 10.1364/AO.45.003593]</ref><ref>Slade, W.H. and Boss, E., 2015. Spectral attenuation and backscattering as indicators of average particle size. Applied Optics, 54(24), pp. 7264-7277. [https://doi.org/10.1364/AO.54.007264 doi: 10/1364/AO.54.007264]&nbsp;&nbsp; [[Media: SladeBoss2015.pdf | Open Access Article]]</ref>. Surface water COPCs such as heavy metals and polychlorinated biphenyls (PCBs) are hydrophobic in nature and tend to sorb to materials in the water column, which have unique optical signatures that can be measured at high-resolution using ''in situ'', commercially available aquatic sensors<ref>Agrawal, Y.C. and Pottsmith, H.C., 2000. Instruments for particle size and settling velocity observations in sediment transport. Marine Geology, 168(1-4), pp. 89-114. [https://doi.org/10.1016/S0025-3227(00)00044-X doi: 10.1016/S0025-3227(00)00044-X]</ref><ref>Boss, E., Pegau, W.S., Gardner, W.D., Zaneveld, J.R.V., Barnard, A.H., Twardowski, M.S., Chang, G.C., Dickey, T.D., 2001. Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf. Journal of Geophysical Research: Oceans, 106(C5), pp. 9509-9516. [https://doi.org/10.1029/2000JC900077  doi: 10.1029/2000JC900077]&nbsp;&nbsp; [[Media: BossEtAl2001.pdf | Open Access Article]]</ref><ref>Boss, E., Pegau, W.S., Lee, M., Twardowski, M., Shybanov, E., Korotaev, G. Baratange, F., 2004. Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution. Journal of Geophysical Research: Oceans, 109(C1), Article C01014. [https://doi.org/10.1029/2002JC001514 doi: 10.1029/2002JC001514]&nbsp;&nbsp; [[Media: BossEtAl2004.pdf | Open Access Article]]</ref><ref>Briggs, N.T., Slade, W.H., Boss, E., Perry, M.J., 2013. Method for estimating mean particle size from high-frequency fluctuations in beam attenuation or scattering measurement. Applied Optics, 52(27), pp. 6710-6725. [https://doi.org/10.1364/AO.52.006710 doi: 10.1364/AO.52.006710]&nbsp;&nbsp; [[Media: BriggsEtAl2013.pdf | Open Access Article]]</ref>. Therefore, high-resolution concentrations of COPCs can be accurately and robustly derived from ''in situ'' measurements using statistical methods.
  
PFAAs, which are ionic and possess a negative charge under ambient environmental conditions, are far less volatile than many other groundwater contaminants.  An online database of vapor pressures and Henry’s Law constants for different PFAS, including PFAAs, is maintained by the Interstate Technology Regulatory Council<ref name="ITRC2020"/>.  In general, vapor pressures of PFAS are low and water solubilities are high, limiting partitioning from water to air<ref name="ITRC2020"/>.  However, under certain conditions, particularly within industrial stack emissions, PFAS can be transported through the atmosphere in both the gas phase and associated with fugitive particulates. In particular, volatile compounds including fluorotelomer alcohols (FTOHs) may be present in the gas phase, whereas, PFAAs can aerosolize and be transported as particulates<ref name="Ahrens2012"/>. In addition, precursors can be transformed to PFAAs in the atmosphere, which can result in PFAA deposition.
+
The OPTICS method is analogous to the commonly used empirical derivation of total suspended solids concentration (TSS) from optical turbidity using linear regression<ref>Rasmussen, P.P., Gray, J.R., Glysson, G.D., Ziegler, A.C., 2009. Guidelines and procedures for computing time-series suspended-sediment concentrations and loads from in-stream turbidity-sensor and streamflow data. In: Techniques and Methods, Book 3: Applications of Hydraulics, Section C: Sediment and Erosion Techniques, Ch. 4. 52 pages. U.S. Geological Survey.&nbsp;&nbsp; [[Media: RasmussenEtAl2009.pdf | Open Access Article]]</ref>. However, rather than deriving one response variable (TSS) from one predictor variable (turbidity), OPTICS involves derivation of one response variable (e.g., PCB concentration) from a suite of predictor variables (e.g., turbidity, temperature, salinity, and fluorescence of chlorophyll-a) using multi-parameter statistical regression. OPTICS is based on statistical correlation – similar to the turbidity-to-TSS regression technique. The method does not rely on interpolation or extrapolation.  
Short-range atmospheric transport and deposition can result in PFAS contamination in terrestrial and aquatic systems near points of significant emissions, impacting soil, groundwater, and other media of concern<ref name="Fang2018">Fang, X., Wang, Q., Zhao, Z., Tang, J., Tian, C., Yao, Y., Yu, J. and Sun, H., 2018. Distribution and dry deposition of alternative and legacy perfluoroalkyl and polyfluoroalkyl substances in the air above the Bohai and Yellow Seas, China. Atmospheric Environment, 192, pp. 128-135. [https://doi.org/10.1016/j.atmosenv.2018.08.052 DOI: 10.1016/j.atmosenv.2018.08.052]</ref><ref name="Brandsma2019">Brandsma, S.H., Koekkoek, J.C., van Velzen, M.J.M. and de Boer, J., 2019. The PFOA substitute GenX detected in the environment near a fluoropolymer manufacturing plant in the Netherlands. Chemosphere, 220, pp. 493-500. [https://doi.org/10.1016/j.chemosphere.2018.12.135 DOI: 10.1016/j.chemosphere.2018.12.135]&nbsp;&nbsp; Open access article available from [https://reader.elsevier.com/reader/sd/pii/S0045653518324706?token=E541D5C4B200C8626A86F41049FE9DCA92652BC9A8BA7D9E47832C08070AB5AF256F4872474C50B5C4908F5CA4C24947 ScienceDirect].&nbsp;&nbsp; [[Media: Brandsma2019.pdf | Report.pdf]]</ref>. Releases of ionic PFAS from factories are likely tied to particulate matter, which settle to the ground in dry weather and are also wet-scavenged by precipitation<ref name="Barton2006">Barton, C.A., Butler, L.E., Zarzecki, C.J., Flaherty, J. and Kaiser, M., 2006. Characterizing Perfluorooctanoate in Ambient Air near the Fence Line of a Manufacturing Facility: Comparing Modeled and Monitored Values. Journal of the Air and Waste Management Association, 56(1), pp.  48-55. [https://doi.org/10.1080/10473289.2006.10464429 DOI: 10.1080/10473289.2006.10464429]&nbsp;&nbsp; Free access article available from [https://www.tandfonline.com/doi/pdf/10.1080/10473289.2006.10464429?needAccess=true Taylor and Francis Online]&nbsp;&nbsp; [[Media: Barton2006.pdf | Report.pdf]]</ref>.  The impact of other potential sources, such as combustion emissions or wind-blown fire-fighting foam from fire training and fire response sites, on the fate and transport of PFAS in air may need to be assessed.
 
  
Long-range transport processes are responsible for the wide distribution of neutral and ionic PFAS across the Earth as evidenced by their occurrence in biota, surface snow, ice cores, seawater, and other environmental media in regions as remote as the Arctic and Antarctic<ref name="Bossi2016">Bossi, R., Vorkamp, K. and Skov, H., 2016. Concentrations of organochlorine pesticides, polybrominated diphenyl ethers and perfluorinated compounds in the atmosphere of North Greenland. Environmental Pollution, 217, pp. 4-10. [https://doi.org/10.1016/j.envpol.2015.12.026 DOI: 10.1016/j.envpol.2015.12.026]</ref><ref name="Ahrens2010">Ahrens, L., Gerwinski, W., Theobald, N. and Ebinghaus, R., 2010. Sources of polyfluoroalkyl compounds in the North Sea, Baltic Sea and Norwegian Sea: Evidence from their spatial distribution in surface water. Marine Pollution Bulletin, 60(2), pp. 255-260. [https://doi.org/10.1016/j.marpolbul.2009.09.013 DOI: 10.1016/j.marpolbul.2009.09.013]</ref>. 
+
The OPTICS technique utilizes partial least-squares (PLS) regression to determine a combination of physical, optical, and water quality properties that best predicts chemical contaminant concentrations with high variance. PLS regression is a statistically based method combining multiple linear regression and principal component analysis (PCA), where multiple linear regression finds a combination of predictors that best fit a response and PCA finds combinations of predictors with large variance<ref name="deJong1993"/><ref name="RosipalKramer2006"/>. Therefore, PLS identifies combinations of multi-collinear predictors (''in situ'', high-resolution physical, optical, and water quality measurements) that have large covariance with the response values (discrete surface water chemical contaminant concentration data from samples that are collected periodically, coincident with ''in situ'' measurements). PLS combines information about the variances of both the predictors and the responses, while also considering the correlations among them. PLS therefore provides a model with reliable predictive power.
Distribution of PFAS to remote regions far removed from direct industrial input is believed to occur from both: a) long-range atmospheric transport and subsequent degradation of volatile precursors; and b) transport via ocean currents and release into the air as marine aerosols (sea spray)<ref name="DeSilva2009">De Silva, A.O., Muir, D.C. and Mabury, S.A., 2009. Distribution of perfluorocarboxylate isomers in select samples from the North American environment. Environmental Toxicology and Chemistry: An International Journal 28(9), pp. 1801-1814. [https://doi.org/10.1897/08-500.1 DOI: 10.1897/08-500.1]</ref><ref name="Armitage2009">Armitage, J.M., 2009. Modeling the global fate and transport of perfluoroalkylated substances (PFAS). Doctoral Dissertation, Institutionen för tillämpad miljövetenskap (ITM), Stockholm University. [[Media: Armitage2009.pdf | Report.pdf]]</ref>.
 
  
==Transport and Partitioning in Aqueous Systems==
+
OPTICS ''in situ'' measurement parameters include, but are not limited to current velocity, conductivity, temperature, depth, turbidity, dissolved oxygen, and fluorescence of chlorophyll-a and dissolved organic matter. Instrumentation for these measurements is commercially available, robust, deployable in a wide variety of configurations (e.g., moored, vessel-mounted, etc.), powered by batteries, and records data internally and/or transmits data in real-time. The physical, optical, and water quality instrumentation is compact and self-contained. The modularity and automated nature of the OPTICS measurement system enables robust, long-term, autonomous data collection for near-continuous monitoring.  
PFAS adsorb from water to a variety of solid materials including organic materials, clay minerals, metal oxides, and granular activated carbon<ref name="Du2014">Du, Z., Deng, S., Bei, Y., Huang, Q., Wang, B., Huang, J. and Yu, G., 2014. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents – A review. Journal of Hazardous Materials, 274, pp. 443-454. [https://doi.org/10.1016/j.jhazmat.2014.04.038 DOI: 10.1016/j.jhazmat.2014.04.038]</ref>.  This process is thought to occur through two primary mechanisms: 1) sorption to organic-carbon components of the solids; and 2) electrostatic (and other) interactions with inorganic constituents of the solids, including clay minerals and metal-oxides<ref name="Guelfo2013">Guelfo, J.L. and Higgins, C.P., 2013. Subsurface Transport Potential of Perfluoroalkyl Acids at Aqueous Film-Forming Foam (AFFF)-Impacted Sites. Environmental Science and Technology, 47(9), pp. 4164-4171. [https://doi.org/10.1021/es3048043 DOI: 10.1021/es3048043]&nbsp;&nbsp; [https://mountainscholar.org/bitstream/handle/11124/80055/Guelfo_mines_0052E_10298.pdf?sequence=1#page=64 Doctoral Dissertation]</ref><ref name="Zhao2014">Zhao, L., Bian, J., Zhang, Y., Zhu, L. and Liu, Z., 2014. Comparison of the sorption behaviors and mechanisms of perfluorosulfonates and perfluorocarboxylic acids on three kinds of clay minerals. Chemosphere, 114, pp. 51-58. [https://doi.org/10.1016/j.chemosphere.2014.03.098 DOI: 10.1016/j.chemosphere.2014.03.098]&nbsp;&nbsp; Free download available from [https://www.researchgate.net/profile/Lixia_Zhao8/publication/262148355_Comparison_of_the_sorption_behaviors_and_mechanisms_of_perfluorosulfonates_and_perfluorocarboxylic_acids_on_three_kinds_of_clay_minerals/links/5b1be5dca6fdcca67b681a4f/Comparison-of-the-sorption-behaviors-and-mechanisms-of-perfluorosulfonates-and-perfluorocarboxylic-acids-on-three-kinds-of-clay-minerals.pdf ResearchGate].</ref>. The relative contribution of each mechanism varies depending on surface chemistry and other geochemical factors, as well as the molecular properties of the PFAS.  In general, the impact of electrostatic interactions with charged soil constituents is more important for PFAS than non-polar, hydrophobic organic contaminants (e.g. hydrocarbons, chlorinated solvents).  Adsorption of PFAS by solids is often nonlinear, with greater sorption at lower solute concentrations.  The impacts of adsorption kinetics and their potential reversibility on PFAS transport have not yet been examined for most PFAS compounds.
 
  
Sorption of hydrocarbons, chlorinated solvents and other hydrophobic organics is often controlled the by organic-carbon components of the solid phase (see [[Sorption of Organic Contaminants]]). However, studies of PFAS sorption to solid phase organic carbon have reported conflicting results. In a study of field sites with aqueous film-forming foam (AFFF, a type of fire-fighting foam) releases, solid phase organic carbon content was found to significantly influence PFAS soil-to-groundwater concentration ratios. Statistical modeling was then used to derive apparent organic carbon partition coefficients for 18 different PFAS<ref name="Anderson2019"/>. A recent compilation of published organic carbon partition coefficients found a good correspondence to PFAS molecular structure<ref name="Brusseau2019a">Brusseau, M.L., 2019. Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per-and poly-fluoroalkyl substances. Environmental Pollution, 254B, p. 113102. [https://doi.org/10.1016/j.envpol.2019.113102 DOI: 10.1016/j.envpol.2019.113102]</ref>. However, other studies have shown a general lack of correlation between solid phase partition coefficients and organic carbon<ref name="Li2018">Li, Y., Oliver, D.P. and Kookana, R.S., 2018. A critical analysis of published data to discern the role of soil and sediment properties in determining sorption of per and polyfluoroalkyl substances (PFASs). Science of the Total Environment, 628, pp. 110-120. [https://doi.org/10.1016/j.scitotenv.2018.01.167 DOI: 10.1016/j.scitotenv.2018.01.167]</ref>. It is possible that greater variability may be observed for broader data sets that incorporate different ranges of PFAS concentrations, different solution conditions, different measurement methods, and field-based data which often have less well-defined conditions and may also be influenced by other retention processes<ref name="Anderson2019"/><ref name="Brusseau2019a"/>.
+
[[File:ChangFig3.png | thumb | 400px| Figure 3. OPTICS to characterize COPC variability in the context of site processes at BCSA. (A) Tidal oscillations (Elev.<sub>MSL</sub>) and precipitation (Precip.). (B) – (D) OPTICS-derived particulate mercury (PHg) and methylmercury (PMeHg) and total PCBs (TPCBs). Open circles represent discrete water sample data.]] OPTICS measurements are provided at a significantly reduced cost relative to traditional monitoring techniques used within the environmental industry. Cost performance analysis shows that monitoring costs are reduced by more than 85% while significantly increasing the temporal and spatial resolution of sampling. The reduced cost of monitoring makes this technology suitable for a number of environmental applications including, but not limited to site baseline characterization, source control evaluation, dredge or stormflow plume characterization, and remedy performance monitoring. OPTICS has been successfully demonstrated for characterizing a wide variety of COPCs: mercury, methylmercury, copper, lead, PCBs, dichlorodiphenyltrichloroethane (DDT) and its related compounds (collectively, DDX), and 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD or dioxin) in a number of different environmental systems ranging from inland lakes and rivers to the coastal ocean. To date, OPTICS has been limited to surface water applications. Additional applications (e.g., groundwater) would require further research and development.
  
[[File:AndersonBrusseau1w2Fig2.png | thumb | 500px | Figure 2. Example of expected orientation and accumulation of PFAS at air-water interface. Source: D. Adamson, GSI, used with permission.]]
+
==Applications==
Most solids present in the environment contain both fixed-charged (negative) and variably charged surfaces. At neutral to high pH, variably charged clay minerals have a net-negative charge.  As a result, negatively charged PFAAs do not strongly interact electrostatically in most soils, although as the soil pH decreases electrostatic sorption would be expected to increase in soils with variably charged clay minerals. Cationic and zwitterionic precursors are expected to be more strongly sorbed than anionic PFAAs in most environments due to well-established cation exchange reactions. Other factors, including ionic strength, composition, and the presence of co-solutes, can affect adsorption of PFAS<ref name="Higgins2006">Higgins, C.P. and Luthy, R.G., 2006. Sorption of Perfluorinated Surfactants on Sediments. Environmental Science and Technology, 40(23), pp. 7251-7256. [https://doi.org/10.1021/es061000n DOI: 10.1021/es061000n]</ref><ref name="Chen2009">Chen, H., Chen, S., Quan, X., Zhao, Y. and Zhao, H., 2009. Sorption of perfluorooctane sulfonate (PFOS) on oil and oil-derived black carbon: Influence of solution pH and [Ca2+]. Chemosphere, 77(10), pp. 1406-1411. [https://doi.org/10.1016/j.chemosphere.2009.09.008 DOI: 10.1016/j.chemosphere.2009.09.008]</ref><ref name="Pan2009">Pan, G., Jia, C., Zhao, D., You, C., Chen, H. and Jiang, G., 2009. Effect of cationic and anionic surfactants on the sorption and desorption of perfluorooctane sulfonate (PFOS) on natural sediments. Environmental Pollution, 157(1), pp.325-330. [https://doi.org/10.1016/j.envpol.2008.06.035 DOI: 10.1016/j.envpol.2008.06.035]&nbsp;&nbsp; Free download available from [https://www.researchgate.net/profile/Gang_Pan2/publication/23189567_Effect_of_cationic_and_anionic_surfactants_on_the_sorption_and_desorption_of_perfluorooctane_sulfonate_PFOS_on_natural_sediments/links/5be19d23a6fdcc3a8dc2550d/Effect-of-cationic-and-anionic-surfactants-on-the-sorption-and-desorption-of-perfluorooctane-sulfonate-PFOS-on-natural-sediments.pdf ResearchGate]</ref><ref name="Guelfo2013"/><ref name="Zhao2014"/>.
+
[[File:ChangFig4.png | thumb | 400px| Figure 4. OPTICS reveals baseflow daily cycling and confirms storm-induced particle-bound COPC resuspension and mobilization through bank interaction. (A) Flow rate (Q) and precipitation (Precip). (B) – (C) OPTICS-derived particulate mercury (PHg) and methylmercury (PMeHg). Open circles represent discrete water sample data.]]
 +
[[File:ChangFig5.png | thumb | 400px| Figure 5. Three-dimensional volume plot of high spatial resolution OPTICS-derived PCBs in exceedance of baseline showing that PCBs were discharged from the outfall (yellow arrow), remained in suspension, and dispersed elsewhere before settling.]]  
 +
An OPTICS study was conducted at Berry’s Creek Study Area (BCSA), New Jersey in 2014 and 2015 to understand COPC sources and transport mechanisms for development of an effective remediation plan. OPTICS successfully extended periodic discrete surface water samples to continuous, high-resolution measurements of PCBs, mercury, and methylmercury to elucidate COPC sources and transport throughout the BCSA tidal estuary system. OPTICS provided data at resolution sufficient to investigate COC variability in the context of physical processes. The results (Figure 3) facilitated focused and effective site remediation and management decisions that could not be determined based on periodic discrete samples alone, despite over seven years of monitoring at different locations throughout the system over a range of different seasons, tidal phases, and environmental conditions. The BCSA OPTICS methodology and its results have undergone official peer review overseen by the U.S. Environmental Protection Agency (USEPA), and those results have been published in peer-reviewed literature<ref name="ChangEtAl2019"/>.  
  
Most PFAS compounds act as surface-active agents (or [[Wikipedia:Surfactant | surfactants]]) due to the presence of a hydrophilic headgroup and a hydrophobic tail. The hydrophilic headgroup will preferentially partition to the aqueous phase and the hydrophobic tail will preferentially partition to the non-aqueous phase (air or organic material).  As a result, PFAS tend to accumulate at interfaces (air-water, water-NAPL, water-solid) (Figure 2).  This tendency to accumulate at interfaces can influence transport in the atmosphere (on water droplets and hydrated aerosols), in the vadose or unsaturated zone at air-water interfaces, in the presence of NAPLs, and in wastewater treatment systems<ref name="Brusseau2018"/><ref name="Brusseau2019b">Brusseau, M.L., 2019. The Influence of Molecular Structure on the Adsorption of PFAS to Fluid-Fluid Interfaces: Using QSPR to Predict Interfacial Adsorption Coefficients. Water Research, 152, pp. 148-158.  [https://doi.org/10.1016/j.watres.2018.12.057 DOI: 10.1016/j.watres.2018.12.057]&nbsp;&nbsp; [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374777/ Author’s Manuscript]</ref>.
+
OPTICS was applied at the South River, Virginia in 2016 to quantify sources of legacy mercury in the system that are contributing to recontamination and continued elevated mercury concentrations in fish tissue. OPTICS provided information necessary to identify mechanisms for COPC redistribution and to quantify the relative contribution of each mechanism to total mass transport of mercury and methylmercury in the system. Continuous, high-resolution COPC data afforded by OPTICS helped resolve baseflow daily cycling that had never before been observed at the South River (Figure 4) and provided data at temporal resolution necessary to verify storm-induced particle-bound COC resuspension and mobilization through bank interaction. The results informed source control and remedy design and monitoring efforts. Methodology and results from the South River have been published in peer-reviewed literature<ref name="ChangEtAl2018"/>.  
 
 
In theoretical and experimental studies of transport in unsaturated porous media, adsorption at the air-water interface increased PFOS and PFOA retention<ref name="Brusseau2018"/><ref name="Lyu2018">Lyu, Y., Brusseau, M.L., Chen, W., Yan, N., Fu, X., and Lin, X., 2018.  Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media. Environmental Science and Technology, 52(14), pp. 7745-7753.  [https://doi.org/10.1021/acs.est.8b02348 DOI: 10.1021/acs.est.8b02348]&nbsp;&nbsp; [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6312111/ Author’s Manuscript]</ref><ref name="BrusseauEtAl2019">Brusseau, M.L., Yan, N., Van Glubt, S., Wang, Y., Chen, W., Lyu, Y., Dungan, B., Carroll, K.C., and Holguin, F.O., 2019. Comprehensive Retention Model for PFAS Transport in Subsurface Systems. Water Research, 148, pp. 41-50.  [https://doi.org/10.1016/j.watres.2018.10.035 DOI: 10.1016/j.watres.2018.10.035]&nbsp;&nbsp; [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294326/ Author’s Manuscript]</ref>, contributing approximately 20% to 80% of total retention in sands and soil. The impact of oil-water interfacial adsorption on PFAS transport was also quantitatively characterized in recent studies and shown to contribute to total retention on a similar scale as air-water interfacial adsorption<ref name="Brusseau2018"/><ref name="BrusseauEtAl2019"/>.  These processes may result in increased PFAS mass retained in NAPL source zones, increased PFAS sorption with the resulting retardation of transport, and greater persistence of dissolved PFAS in the environment.  
 
  
==Transformation==
+
The U.S. Department of Defense’s Environmental Security Technology Certification Program (ESTCP) supported an OPTICS demonstration study at the Pearl Harbor Sediment Site, Hawaii, to determine whether stormwater from Oscar 1 Pier outfall is a contributing source of PCBs to Decision Unit (DU) N-2 (ESTCP Project ER21-5021). High spatial resolution results afforded by ship-based, mobile OPTICS monitoring suggested that PCBs were discharged from the outfall, remained in suspension, and dispersed elsewhere before settling (Figure 5). More details regarding this study were presented by Chang et al. in 2024<ref name="ChangEtAl2024"/>.
[[File:AndersonBrusseau1w2Fig3.png | thumb | 600px | Figure 3. Conceptual model of precursor transformation resulting in the formation of PFAAs. Source L. Trozzolo, TRC and C. Higgins, Colorado School of Mines, used with permission.]]
 
Certain polyfluorinated substances have the potential to transform to other PFAS, with PFAAs as the typical terminal daughter products. These polyfluorinated substances are often referred to as “precursors”. The transformation potential of polyfluorinated precursors is influenced by the presence, location, and number of carbon-hydrogen (C-H) bonds and potentially carbon-oxygen (C-O) bonds throughout the carbon chain. Specifically, PFAS with C-H bonds are subject to a variety of biotic and abiotic reactions that ultimately result in the formation of PFAAs with perfluorinated carbon chains of the same length or shorter than the initial polyfluorinated precursor<ref name="Houtz2013">Houtz, E.F., Higgins, C.P., Field, J.A. and Sedlak, D.L., 2013. Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil. Environmental Science and Technology, 47(15), pp. 8187-8195.  [https://doi.org/10.1021/es4018877 DOI: 10.1021/es4018877]&nbsp;&nbsp; Free download from [https://www.researchgate.net/profile/Erika_Houtz/publication/252323955_Persistence_of_Perfluoroalkyl_Acid_Precursors_in_AFFF-Impacted_Groundwater_and_Soil/links/59dbddeeaca2728e2018336d/Persistence-of-Perfluoroalkyl-Acid-Precursors-in-AFFF-Impacted-Groundwater-and-Soil.pdf ReseqarchGate]</ref><ref name="McGuire2014">McGuire, M.E., Schaefer, C., Richards, T., Backe, W.J., Field, J.A., Houtz, E., Sedlak, D.L., Guelfo, J.L., Wunsch, A., and Higgins, C.P., 2014. Evidence of Remediation-Induced Alteration of Subsurface Poly- and Perfluoroalkyl Substance Distribution at a Former Firefighter Training Area. Environmental Science and Technology, 48(12) pp. 6644-6652.  [https://doi.org/10.1021/es5006187 DOI: 10.1021/es5006187]&nbsp;&nbsp; Manuscript available from [https://ir.library.oregonstate.edu/downloads/td96k706f Oregon State University]</ref><ref name="Anderson2016">Anderson, R.H., Long, G.C., Porter, R.C. and Anderson, J.K., 2016. Occurrence of select perfluoroalkyl substances at US Air Force aqueous film-forming foam release sites other than fire-training areas: Field-validation of critical fate and transport properties. Chemosphere, 150, pp. 678-685.  [https://doi.org/10.1016/j.chemosphere.2016.01.014 DOI: 10.1016/j.chemosphere.2016.01.014]</ref><ref name="Weber2017"/>.
 
  
Transformation studies published to date have tested only a small subsample of possible precursors and, therefore, much uncertainty exists regarding 1) the extent to which precursor transformation occurs on a global scale, 2) which environmental compartments represent the majority of transformation, 3) relevant environmental conditions that affect transformation processes, and 4) transformation rates and pathways. Nevertheless, a portion of the precursors are expected to transform to PFAAs over time as shown in Figure 3.
+
==Summary==
 +
OPTICS provides:
 +
*High resolution surface water chemical contaminant characterization
 +
*Cost-effective monitoring and assessment
 +
*Versatile and modular monitoring with capability for real-time telemetry
 +
*Data necessary for development and validation of conceptual site models
 +
*A key line of evidence for designing and evaluating remedies.
  
Precursors can be transformed by a variety of abiotic processes including hydrolysis, photolysis, and oxidation. Hydrolysis of some precursors, followed by subsequent biotransformation, can produce perfluoroalkyl sulfonates (PFSAs).  An important example is the production of PFOS from perfluorooctane sulfonyl fluoride (POSF)<ref name="Martin2010">Martin, J.W., Asher, B.J., Beesoon, S., Benskin, J.P. and Ross, M.S., 2010. PFOS or PreFOS? Are perfluorooctane sulfonate precursors (PreFOS) important determinants of human and environmental perfluorooctane sulfonate (PFOS) exposure? Journal of Environmental Monitoring, 12(11), pp.1979-2004.  [https://doi.org/10.1039/C0EM00295J DOI: 10.1039/C0EM00295J]&nbsp;&nbsp; Free download from [https://www.researchgate.net/profile/Matthew_Ross3/publication/47415684_PFOS_or_PreFOS_Are_perfluorooctane_sulfonate_precursors_PreFOS_important_determinants_of_human_and_environmental_perfluorooctane_sulfonate_PFOS_exposure/links/00b7d520a6132da945000000.pdf ResearchGate]</ref>.  Other hydrolysis reactions produce perfluoroalkyl carboxylates (PFCAs). At neutral pH, the hydrolysis of fluorotelomer-derived polymeric precursors results in the formation of monomeric precursors of PFOA and other PFAAs with half-lives of 50 to 90 years)<ref name="Washington2010">Washington, J.W., Ellington, J.J., Jenkins, T.M. and Yoo, H., 2010. Response to Comments on “Degradability of an Acrylate-Linked, Fluorotelomer Polymer in Soil”. Environmental Science and Technology, 44(2), pp. 849-850.  [https://doi.org/10.1021/es902672q DOI: 10.1021/es902672q]&nbsp;&nbsp;  [https://pubs.acs.org/doi/pdf/10.1021/es902672q Free Download from ACS].</ref>.  Oxidation of precursors by hydroxyl radicals can occur in natural waters, with the fluorotelomer-derived precursors being oxidized relatively rapidly<ref name="Gauthier2005">Gauthier, S.A. and Mabury, S.A., 2005. Aqueous photolysis of 8: 2 fluorotelomer alcohol. Environmental Toxicology and Chemistry, 24(8), pp.1837-1846.  [https://doi.org/10.1897/04-591R.1 DOI: 10.1897/04-591R.1]&nbsp;&nbsp; Free download from [https://www.researchgate.net/profile/Suzanne_Gauthier/publication/7609648_Aqueous_photolysis_of_8_2_fluorotelomer_alcohol/links/5ec16c4792851c11a86d9438/Aqueous-photolysis-of-8-2-fluorotelomer-alcohol.pdf ResearchGate].</ref><ref name="Plumlee2009">Plumlee, M.H., McNeill, K. and Reinhard, M., 2009. Indirect Photolysis of Perfluorochemicals: Hydroxyl Radical-Initiated Oxidation of N-Ethyl Perfluorooctane Sulfonamido Acetate (N-EtFOSAA) and Other Perfluoroalkanesulfonamides. Environmental Science and Technology, 43(10), pp.3662-3668.  [https://doi.org/10.1021/es803411w DOI: 10.1021/es803411w]&nbsp;&nbsp; Free download from [https://www.researchgate.net/profile/Megan_Plumlee/publication/26309488_Indirect_Photolysis_of_Perfluorochemicals_Hydroxyl_Radical-Initiated_Oxidation_of_N-Ethyl_Perfluorooctane_Sulfonamido_Acetate_N-EtFOSAA_and_Other_Perfluoroalkanesulfonamides/links/5aac0437a6fdcc1bc0b8d002/Indirect-Photolysis-of-Perfluorochemicals-Hydroxyl-Radical-Initiated-Oxidation-of-N-Ethyl-Perfluorooctane-Sulfonamido-Acetate-N-EtFOSAA-and-Other-Perfluoroalkanesulfonamides.pdf ResearchGate].</ref>.
+
Because OPTICS monitoring involves deployment of autonomous sampling instrumentation, a substantially greater volume of data can be collected using this technique compared to traditional sampling, and at a far lower cost. A large volume of data supports evaluation of chemical contaminant concentrations over a range of spatial and temporal scales, and the system can be customized for a variety of environmental applications. OPTICS helps quantify contaminant mass flux and the relative contribution of local transport and source areas to net contaminant transport. OPTICS delivers a strong line of evidence for evaluating contaminant sources, fate, and transport, and for supporting the design of a remedy tailored to address site-specific, risk-driving conditions. The improved understanding of site processes aids in the development of mitigation measures that minimize site risks.  
Evidence of aerobic biotransformation is provided from studies of PFAS composition throughout the continuum of wastewater treatments<ref name="Arvaniti2015">Arvaniti, O.S. and Stasinakis, A.S., 2015. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment. Science of the Total Environment, 524, pp. 81-92.  [https://doi.org/10.1016/j.scitotenv.2015.04.023 DOI: 10.1016/j.scitotenv.2015.04.023]</ref>, from field studies at AFFF-impacted sites<ref name="Houtz2013"/><ref name="McGuire2014"/><ref name="Anderson2016"/><ref name="Weber2017"/>, and from microcosm experiments. In general, the literature on aerobic biotransformation collectively demonstrates or indirectly supports the following conclusions as summarized in ITRC 2020<ref name="ITRC2020"/>:
 
* Numerous aerobic biotransformation pathways exist with relatively rapid kinetics
 
* All polyfluorinated precursors studied to date have the potential to aerobically biotransform to PFAAs
 
* Aerobic biotransformation of various fluorotelomer-derived precursors exclusively results in the formation of PFCAs, including PFOA, without necessarily the conservation of chain-length
 
* Aerobic biotransformation of various electrochemical fluorination-derived precursors primarily results in the formation of PFAAs, including PFOS, with the conservation of chain-length
 
Precursor transformation can complicate CSMs (and risk assessments) and should be considered during comprehensive site investigations.  For example, atmospheric emissions of volatile precursors can result in long-range transport where subsequent transformation and deposition can result in detectable levels of PFAAs in environmental media independent of obvious point-sources<ref name="Vedagiri2018">Vedagiri, U.K., Anderson, R.H., Loso, H.M. and Schwach, C.M., 2018. Ambient levels of PFOS and PFOA in multiple environmental media. Remediation Journal, 28(2), pp. 9-51. [https://doi.org/10.1002/rem.21548 DOI: 10.1002/rem.21548]</ref>.  With respect to site-related precursors, transformation of otherwise unmeasured PFAS into detectable PFAAs is obviously relevant to site investigations to the extent transformation occurs after initial site characterization efforts or if past remedial efforts have accelerated ''in situ'' transformation rates<ref name="McGuire2014"/>.  Additionally, differential transport rates between precursor PFAS and the corresponding terminal PFAA could also confound CSMs if transformation rates are slower than transport rates as has been suggested<ref name="Weber2017"/>. 
 
To account for otherwise unmeasurable precursors, several surrogate analytical methods have been developed. See [[PFAS Sampling and Analytical Methods]] for additional detail.
 
  
 
==References==
 
==References==
<references/>
+
<references />
  
==See Also:==
+
==See Also==

Latest revision as of 20:39, 15 July 2024

Assessing Vapor Intrusion (VI) Impacts in Neighborhoods with Groundwater Contaminated by Chlorinated Volatile Organic Chemicals (CVOCs)

The VI Diagnosis Toolkit[1] is a set of tools that can be used individually or in combination to assess vapor intrusion (VI) impacts at one or more buildings overlying regional-scale dissolved chlorinated solvent-impacted groundwater plumes. The strategic use of these tools can lead to confident and efficient neighborhood-scale VI pathway assessments.

Related Article(s):

Contributor(s):

  • Paul C. Johnson, Ph.D.
  • Paul Dahlen, Ph.D.
  • Yuanming Guo, Ph.D.

Key Resource(s):

  • The VI Diagnosis Toolkit for Assessing Vapor Intrusion Pathways and Impacts in Neighborhoods Overlying Dissolved Chlorinated Solvent Plumes, ESTCP Project ER-201501, Final Report[1]
  • CPM Test Guidelines: Use of Controlled Pressure Method Testing for Vapor Intrusion Pathway Assessment, ESTCP Project ER-201501, Technical Report[2]
  • VI Diagnosis Toolkit User Guide, ESTCP Project ER-201501[3]

Background

Figure 1. Example of instrumentation used for OPTICS monitoring.
Figure 2. Schematic diagram illustrating the OPTICS methodology. High resolution in-situ data are integrated with traditional discrete sample analytical data using partial least-square regression to derive high resolution chemical contaminant concentration data series.

Nationwide, the liability due to contaminated sediments is estimated in the trillions of dollars. Stakeholders are assessing and developing remedial strategies for contaminated sediment sites in major harbors and waterways throughout the U.S. The mobility of contaminants in surface water is a primary transport and risk mechanism[4][5][6]; therefore, long-term monitoring of both particulate- and dissolved-phase contaminant concentration prior to, during, and following remedial action is necessary to document remedy effectiveness. Source control and total maximum daily load (TMDL) actions generally require costly manual monitoring of dissolved and particulate contaminant concentrations in surface water. The magnitude of cost for these actions is a strong motivation to implement efficient methods for long-term source control and remedial monitoring.

Traditional surface water monitoring requires mobilization of field teams to manually collect discrete water samples, send samples to laboratories, and await laboratory analysis so that a site evaluation can be conducted. These traditional methods are well known to have inherent cost and safety concerns and are of limited use (due to safety concerns and standby requirements for resources) in capturing the effects of episodic events (e.g., storms) that are important to consider in site risk assessment and remedy selection. Automated water samplers are commercially available but still require significant field support and costly laboratory analysis. Further, automated samplers may not be suitable for analytes with short hold-times and temperature requirements.

Optically-based characterization of surface water contaminants is a cost-effective alternative to traditional discrete water sampling methods. Unlike discrete water sampling, which typically results in sparse data at low resolution, and therefore, is of limited use in determining mass loading, OPTICS (OPTically-based In-situ Characterization System) provides continuous data and allows for a complete understanding of water quality and contaminant transport in response to natural processes and human impacts[7][8][9][10][11][12]. The OPTICS tool integrates commercial off-the-shelf in situ aquatic sensors (Figure 1), periodic discrete surface water sample collection, and a multi-parameter statistical prediction model[13][14] to provide high temporal and/or spatial resolution characterization of surface water chemicals of potential concern (COPCs) (Figure 2).

Technology Overview

The principle behind OPTICS is based on the relationship between optical properties of natural waters and the particles and dissolved material contained within them[15][16][17][18][19][20][21][22]. Surface water COPCs such as heavy metals and polychlorinated biphenyls (PCBs) are hydrophobic in nature and tend to sorb to materials in the water column, which have unique optical signatures that can be measured at high-resolution using in situ, commercially available aquatic sensors[23][24][25][26]. Therefore, high-resolution concentrations of COPCs can be accurately and robustly derived from in situ measurements using statistical methods.

The OPTICS method is analogous to the commonly used empirical derivation of total suspended solids concentration (TSS) from optical turbidity using linear regression[27]. However, rather than deriving one response variable (TSS) from one predictor variable (turbidity), OPTICS involves derivation of one response variable (e.g., PCB concentration) from a suite of predictor variables (e.g., turbidity, temperature, salinity, and fluorescence of chlorophyll-a) using multi-parameter statistical regression. OPTICS is based on statistical correlation – similar to the turbidity-to-TSS regression technique. The method does not rely on interpolation or extrapolation.

The OPTICS technique utilizes partial least-squares (PLS) regression to determine a combination of physical, optical, and water quality properties that best predicts chemical contaminant concentrations with high variance. PLS regression is a statistically based method combining multiple linear regression and principal component analysis (PCA), where multiple linear regression finds a combination of predictors that best fit a response and PCA finds combinations of predictors with large variance[13][14]. Therefore, PLS identifies combinations of multi-collinear predictors (in situ, high-resolution physical, optical, and water quality measurements) that have large covariance with the response values (discrete surface water chemical contaminant concentration data from samples that are collected periodically, coincident with in situ measurements). PLS combines information about the variances of both the predictors and the responses, while also considering the correlations among them. PLS therefore provides a model with reliable predictive power.

OPTICS in situ measurement parameters include, but are not limited to current velocity, conductivity, temperature, depth, turbidity, dissolved oxygen, and fluorescence of chlorophyll-a and dissolved organic matter. Instrumentation for these measurements is commercially available, robust, deployable in a wide variety of configurations (e.g., moored, vessel-mounted, etc.), powered by batteries, and records data internally and/or transmits data in real-time. The physical, optical, and water quality instrumentation is compact and self-contained. The modularity and automated nature of the OPTICS measurement system enables robust, long-term, autonomous data collection for near-continuous monitoring.

Figure 3. OPTICS to characterize COPC variability in the context of site processes at BCSA. (A) Tidal oscillations (Elev.MSL) and precipitation (Precip.). (B) – (D) OPTICS-derived particulate mercury (PHg) and methylmercury (PMeHg) and total PCBs (TPCBs). Open circles represent discrete water sample data.

OPTICS measurements are provided at a significantly reduced cost relative to traditional monitoring techniques used within the environmental industry. Cost performance analysis shows that monitoring costs are reduced by more than 85% while significantly increasing the temporal and spatial resolution of sampling. The reduced cost of monitoring makes this technology suitable for a number of environmental applications including, but not limited to site baseline characterization, source control evaluation, dredge or stormflow plume characterization, and remedy performance monitoring. OPTICS has been successfully demonstrated for characterizing a wide variety of COPCs: mercury, methylmercury, copper, lead, PCBs, dichlorodiphenyltrichloroethane (DDT) and its related compounds (collectively, DDX), and 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD or dioxin) in a number of different environmental systems ranging from inland lakes and rivers to the coastal ocean. To date, OPTICS has been limited to surface water applications. Additional applications (e.g., groundwater) would require further research and development.

Applications

Figure 4. OPTICS reveals baseflow daily cycling and confirms storm-induced particle-bound COPC resuspension and mobilization through bank interaction. (A) Flow rate (Q) and precipitation (Precip). (B) – (C) OPTICS-derived particulate mercury (PHg) and methylmercury (PMeHg). Open circles represent discrete water sample data.
Figure 5. Three-dimensional volume plot of high spatial resolution OPTICS-derived PCBs in exceedance of baseline showing that PCBs were discharged from the outfall (yellow arrow), remained in suspension, and dispersed elsewhere before settling.

An OPTICS study was conducted at Berry’s Creek Study Area (BCSA), New Jersey in 2014 and 2015 to understand COPC sources and transport mechanisms for development of an effective remediation plan. OPTICS successfully extended periodic discrete surface water samples to continuous, high-resolution measurements of PCBs, mercury, and methylmercury to elucidate COPC sources and transport throughout the BCSA tidal estuary system. OPTICS provided data at resolution sufficient to investigate COC variability in the context of physical processes. The results (Figure 3) facilitated focused and effective site remediation and management decisions that could not be determined based on periodic discrete samples alone, despite over seven years of monitoring at different locations throughout the system over a range of different seasons, tidal phases, and environmental conditions. The BCSA OPTICS methodology and its results have undergone official peer review overseen by the U.S. Environmental Protection Agency (USEPA), and those results have been published in peer-reviewed literature[7].

OPTICS was applied at the South River, Virginia in 2016 to quantify sources of legacy mercury in the system that are contributing to recontamination and continued elevated mercury concentrations in fish tissue. OPTICS provided information necessary to identify mechanisms for COPC redistribution and to quantify the relative contribution of each mechanism to total mass transport of mercury and methylmercury in the system. Continuous, high-resolution COPC data afforded by OPTICS helped resolve baseflow daily cycling that had never before been observed at the South River (Figure 4) and provided data at temporal resolution necessary to verify storm-induced particle-bound COC resuspension and mobilization through bank interaction. The results informed source control and remedy design and monitoring efforts. Methodology and results from the South River have been published in peer-reviewed literature[8].

The U.S. Department of Defense’s Environmental Security Technology Certification Program (ESTCP) supported an OPTICS demonstration study at the Pearl Harbor Sediment Site, Hawaii, to determine whether stormwater from Oscar 1 Pier outfall is a contributing source of PCBs to Decision Unit (DU) N-2 (ESTCP Project ER21-5021). High spatial resolution results afforded by ship-based, mobile OPTICS monitoring suggested that PCBs were discharged from the outfall, remained in suspension, and dispersed elsewhere before settling (Figure 5). More details regarding this study were presented by Chang et al. in 2024[9].

Summary

OPTICS provides:

  • High resolution surface water chemical contaminant characterization
  • Cost-effective monitoring and assessment
  • Versatile and modular monitoring with capability for real-time telemetry
  • Data necessary for development and validation of conceptual site models
  • A key line of evidence for designing and evaluating remedies.

Because OPTICS monitoring involves deployment of autonomous sampling instrumentation, a substantially greater volume of data can be collected using this technique compared to traditional sampling, and at a far lower cost. A large volume of data supports evaluation of chemical contaminant concentrations over a range of spatial and temporal scales, and the system can be customized for a variety of environmental applications. OPTICS helps quantify contaminant mass flux and the relative contribution of local transport and source areas to net contaminant transport. OPTICS delivers a strong line of evidence for evaluating contaminant sources, fate, and transport, and for supporting the design of a remedy tailored to address site-specific, risk-driving conditions. The improved understanding of site processes aids in the development of mitigation measures that minimize site risks.

References

  1. ^ 1.0 1.1 Johnson, P.C., Guo, Y., Dahlen, P., 2020. The VI Diagnosis Toolkit for Assessing Vapor Intrusion Pathways and Mitigating Impacts in Neighborhoods Overlying Dissolved Chlorinated Solvent Plumes. ESTCP Project ER-201501, Final Report. Project Website   Final Report.pdf
  2. ^ Johnson, P.C., Guo, Y., Dahlen, P., 2021. CPM Test Guidelines: Use of Controlled Pressure Method Testing for Vapor Intrusion Pathway Assessment. ESTCP ER-201501, Technical Report. Project Website   Technical_Report.pdf
  3. ^ Johnson, P.C., Guo, Y., and Dahlen, P., 2022. VI Diagnosis Toolkit User Guide, ESTCP ER-201501, User Guide. Project Website   User_Guide.pdf
  4. ^ Thibodeaux, L.J., 1996. Environmental Chemodynamics: Movement of Chemicals in Air, Water, and Soil, 2nd Edition, Volume 110 of Environmental Science and Technology: A Wiley-Interscience Series of Texts and Monographs. John Wiley & Sons, Inc. 624 pages. ISBN: 0-471-61295-2
  5. ^ United States Environmental Protection Agency (USEPA), 2005. Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. Office of Superfund Remediation and Technology Innovation Report, EPA-540-R-05-012. Report.pdf
  6. ^ Lick, W., 2008. Sediment and Contaminant Transport in Surface Waters. CRC Press. 416 pages. doi: 10.1201/9781420059885
  7. ^ 7.0 7.1 Cite error: Invalid <ref> tag; no text was provided for refs named ChangEtAl2019
  8. ^ 8.0 8.1 Cite error: Invalid <ref> tag; no text was provided for refs named ChangEtAl2018
  9. ^ 9.0 9.1 Cite error: Invalid <ref> tag; no text was provided for refs named ChangEtAl2024
  10. ^ Bergamaschi, B.A., Fleck, J.A., Downing, B.D., Boss, E., Pellerin, B., Ganju, N.K., Schoellhamer, D.H., Byington, A.A., Heim, W.A., Stephenson, M., Fujii, R., 2011. Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements. Limnology and Oceanography, 56(4), pp. 1355-1371. doi: 10.4319/lo.2011.56.4.1355   Open Access Article
  11. ^ Bergamaschi, B.A., Fleck, J.A., Downing, B.D., Boss, E., Pellerin, B.A., Ganju, N.K., Schoellhamer, D.H., Byington, A.A., Heim, W.A., Stephenson, M., Fujii, R., 2012. Mercury Dynamics in a San Francisco Estuary Tidal Wetland: Assessing Dynamics Using In Situ Measurements. Estuaries and Coasts, 35, pp. 1036-1048. doi: 10.1007/s12237-012-9501-3   Open Access Article
  12. ^ Bergamaschi, B.A., Krabbenhoft, D.P., Aiken, G.R., Patino, E., Rumbold, D.G., Orem, W.H., 2012. Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary. Environmental Science and Technology, 46(3), pp. 1371-1378. doi: 10.1021/es2029137   Open Access Article
  13. ^ 13.0 13.1 de Jong, S., 1993. SIMPLS: an alternative approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems, 18(3), pp. 251-263. doi: 10.1016/0169-7439(93)85002-X
  14. ^ 14.0 14.1 Rosipal, R. and Krämer, N., 2006. Overview and Recent Advances in Partial Least Squares, In: Subspace, Latent Structure, and Feature Selection: Statistical and Optimization Perspectives Workshop, Revised Selected Papers (Lecture Notes in Computer Science, Volume 3940), Springer-Verlag, Berlin, Germany. pp. 34-51. doi: 10.1007/11752790_2
  15. ^ Boss, E. and Pegau, W.S., 2001. Relationship of light scattering at an angle in the backward direction to the backscattering coefficient. Applied Optics, 40(30), pp. 5503-5507. doi: 10.1364/AO.40.005503
  16. ^ Boss, E., Twardowski, M.S., Herring, S., 2001. Shape of the particulate beam spectrum and its inversion to obtain the shape of the particle size distribution. Applied Optics, 40(27), pp. 4884-4893. doi:10/1364/AO.40.004885
  17. ^ Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., Stramski, D., 2003. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnology and Oceanography, 48(2), pp. 843-859. doi: 10.4319/lo.2003.48.2.0843   Open Access Article
  18. ^ Coble, P., Hu, C., Gould, R., Chang, G., Wood, M., 2004. Colored dissolved organic matter in the coastal ocean: An optical tool for coastal zone environmental assessment and management. Oceanography, 17(2), pp. 50-59. doi: 10.5670/oceanog.2004.47   Open Access Article
  19. ^ Sullivan, J.M., Twardowski, M.S., Donaghay, P.L., Freeman, S.A., 2005. Use of optical scattering to discriminate particle types in coastal waters. Applied Optics, 44(9), pp. 1667–1680. doi: 10.1364/AO.44.001667
  20. ^ Twardowski, M.S., Boss, E., Macdonald, J.B., Pegau, W.S., Barnard, A.H., Zaneveld, J.R.V., 2001. A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. Journal of Geophysical Research: Oceans, 106(C7), pp. 14,129-14,142. doi: 10/1029/2000JC000404   Open Access Article
  21. ^ Chang, G.C., Barnard, A.H., McLean, S., Egli, P.J., Moore, C., Zaneveld, J.R.V., Dickey, T.D., Hanson, A., 2006. In situ optical variability and relationships in the Santa Barbara Channel: implications for remote sensing. Applied Optics, 45(15), pp. 3593–3604. doi: 10.1364/AO.45.003593
  22. ^ Slade, W.H. and Boss, E., 2015. Spectral attenuation and backscattering as indicators of average particle size. Applied Optics, 54(24), pp. 7264-7277. doi: 10/1364/AO.54.007264   Open Access Article
  23. ^ Agrawal, Y.C. and Pottsmith, H.C., 2000. Instruments for particle size and settling velocity observations in sediment transport. Marine Geology, 168(1-4), pp. 89-114. doi: 10.1016/S0025-3227(00)00044-X
  24. ^ Boss, E., Pegau, W.S., Gardner, W.D., Zaneveld, J.R.V., Barnard, A.H., Twardowski, M.S., Chang, G.C., Dickey, T.D., 2001. Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf. Journal of Geophysical Research: Oceans, 106(C5), pp. 9509-9516. doi: 10.1029/2000JC900077   Open Access Article
  25. ^ Boss, E., Pegau, W.S., Lee, M., Twardowski, M., Shybanov, E., Korotaev, G. Baratange, F., 2004. Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution. Journal of Geophysical Research: Oceans, 109(C1), Article C01014. doi: 10.1029/2002JC001514   Open Access Article
  26. ^ Briggs, N.T., Slade, W.H., Boss, E., Perry, M.J., 2013. Method for estimating mean particle size from high-frequency fluctuations in beam attenuation or scattering measurement. Applied Optics, 52(27), pp. 6710-6725. doi: 10.1364/AO.52.006710   Open Access Article
  27. ^ Rasmussen, P.P., Gray, J.R., Glysson, G.D., Ziegler, A.C., 2009. Guidelines and procedures for computing time-series suspended-sediment concentrations and loads from in-stream turbidity-sensor and streamflow data. In: Techniques and Methods, Book 3: Applications of Hydraulics, Section C: Sediment and Erosion Techniques, Ch. 4. 52 pages. U.S. Geological Survey.   Open Access Article

See Also