Difference between revisions of "User:Debra Tabron/sandbox"

From Enviro Wiki
Jump to: navigation, search
 
(355 intermediate revisions by the same user not shown)
Line 1: Line 1:
The firing and detonation of munitions will result in the deposition of unreacted energetic compounds. These materials, in sufficient concentrations, can be harmful to the environment and human health. The mass of energetics residue also indicates the efficiency of the activity, be it firing or detonation of the round or the disposal of propellants or unexploded ordnance. Quantifying energetics deposition is the basis for fate and transport analysis and modeling, range sustainment capabilities, and determining the toxicological impacts of munitions compounds.
+
The heterogeneous distribution of munitions constituents, released as particles from munitions firing and detonations on military training ranges, presents challenges for representative soil sample collection and for defensible decision making. Military range characterization studies and the development of the incremental sampling methodology (ISM) have enabled the development of recommended methods for soil sampling that produce representative and reproducible concentration data for munitions constituents. This article provides a broad overview of recommended soil sampling and processing practices for analysis of munitions constituents on military ranges.  
 +
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
+
'''Related Article(s)''':  
  
'''Related Articles''':
 
  
 +
'''CONTRIBUTOR(S):'''  [[Dr. Samuel Beal]]
  
'''CONTRIBUTOR(S):''' [[Michael R. Walsh, P.E., M.E.]]
 
  
'''Key Resource(s):''' [http://dx.doi.org/10.1002/prep.201200150 Characterization of PAX-21 Insensitive Munition Detonation Residues]<ref name= "Walsh2013">Walsh, M.R., Walsh, M.E., Taylor, S., Ramsey, C.A., Ringelberg, D.B., Zufelt, J.E., Thiboutot, S., Ampleman, G. and Diaz, E., 2013. Characterization of PAX‐21 Insensitive Munition Detonation Residues. Propellants, Explosives, Pyrotechnics, 38(3), pp.399-409. [http://dx.doi.org/10.1002/prep.201200150 doi: 10.1002/prep.201200150]</ref>
+
'''Key Resource(s)''':
 +
*[[media:Taylor-2011 ERDC-CRREL TR-11-15.pdf| Guidance for Soil Sampling of Energetics and Metals]]<ref name= "Taylor2011">Taylor, S., Jenkins, T.F., Bigl, S., Hewitt, A.D., Walsh, M.E. and Walsh, M.R., 2011. Guidance for Soil Sampling for Energetics and Metals (No. ERDC/CRREL-TR-11-15). [[media:Taylor-2011 ERDC-CRREL TR-11-15.pdf| Report.pdf]]</ref>
 +
*[[Media:Hewitt-2009 ERDC-CRREL TR-09-6.pdf| Report.pdf | Validation of Sampling Protocol and the Promulgation of Method Modifications for the Characterization of Energetic Residues on Military Testing and Training Ranges]]<ref name= "Hewitt2009">Hewitt, A.D., Jenkins, T.F., Walsh, M.E., Bigl, S.R. and Brochu, S., 2009. Validation of sampling protocol and the promulgation of method modifications for the characterization of energetic residues on military testing and training ranges (No. ERDC/CRREL-TR-09-6). Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) TR-09-6, Hanover, NH, USA. [[Media:Hewitt-2009 ERDC-CRREL TR-09-6.pdf | Report.pdf]]</ref>
 +
*[[media:Epa-2006-method-8330b.pdf| U.S. EPA SW-846 Method 8330B: Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC)]]<ref name= "USEPA2006M">U.S. Environmental Protection Agency (USEPA), 2006. Method 8330B (SW-846): Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC), Rev. 2. Washington, D.C. [[media:Epa-2006-method-8330b.pdf | Report.pdf]]</ref>
 +
*[[media:Epa-2007-method-8095.pdf | U.S. EPA SW-846 Method 8095: Explosives by Gas Chromatography.]]<ref name= "USEPA2007M">U.S. Environmental Protection Agency (US EPA), 2007. Method 8095 (SW-846): Explosives by Gas Chromatography. Washington, D.C. [[media:Epa-2007-method-8095.pdf| Report.pdf]]</ref>
  
 
==Introduction==
 
==Introduction==
Live-fire military training is an integral part of combat readiness. During this training, energetic materials such as explosives, propellants, and pyrotechnics are expended. Research conducted at the US Army’s Cold Regions Research and Engineering Laboratory has demonstrated that during training activities, some energetic material always remains<ref>Walsh, M.R., Walsh, M.E., Poulin, I., Taylor, S. and Douglas, T.A., 2011. Energetic residues from the detonation of common US ordnance. International Journal of Energetic Materials and Chemical Propulsion, 10(2). [http://dx.doi.org/10.1615/intjenergeticmaterialschemprop.2012004956 doi: 10.1615/IntJEnergeticMaterialsChemProp.2012004956]</ref><ref name= "Walsh2012">Walsh, M.R., Walsh, M.E., Ampleman, G., Thiboutot, S., Brochu, S. and Jenkins, T.F., 2012. Munitions propellants residue deposition rates on military training ranges. Propellants, Explosives, Pyrotechnics, 37(4), pp.393-406. [http://dx.doi.org/10.1002/prep.201100105 doi: 10.1002/prep.201100105 ]</ref><ref name = "Walsh2010">Walsh, M.R., Walsh, M.E. and Hewitt, A.D., 2010. Energetic residues from field disposal of gun propellants. Journal of Hazardous Materials, 173(1), pp.115-122. [http://dx.doi.org/10.1016/j.jhazmat.2009.08.056 doi:10.1016/j.jhazmat.2009.08.056]</ref>. These materials can migrate to groundwater and possibly off range, jeopardizing human health and the sustainability of our military’s range assets. Very large environmental liabilities can be incurred because of energetics contamination ranges, such as has occurred at the Eagle River Flats impact area on the former Ft. Richardson, AK, and the Massachusetts Military Reservation on Cape Cod, MA<ref>Walsh, M.E., Walsh, M.R., Collins, C.M. and Racine, C.H., 2014. White phosphorus contamination of an active army training range. Water, Air, & Soil Pollution, 225(6), pp.1-11. [http://dx.doi.org/10.1007/s11270-014-2001-2 doi: 10.1007/s11270-014-2001-2]</ref><ref>Clausen, J., Robb, J., Curry, D. and Korte, N., 2004. A case study of contaminants on military ranges: Camp Edwards, Massachusetts, USA. Environmental Pollution, 129(1), pp.13-21. [http://dx.doi.org/10.1016/j.envpol.2003.10.002 doi: 10.1016/j.envpol.2003.10.002]</ref>.
+
[[File:Beal1w2 Fig1.png|thumb|200 px|left|Figure 1: Downrange distance of visible propellant plume on snow from the firing of different munitions. Note deposition behind firing line for the 84-mm rocket. Data from: Walsh et al.<ref>Walsh, M.R., Walsh, M.E., Ampleman, G., Thiboutot, S., Brochu, S. and Jenkins, T.F., 2012. Munitions propellants residue deposition rates on military training ranges. Propellants, Explosives, Pyrotechnics, 37(4), pp.393-406. [http://dx.doi.org/10.1002/prep.201100105 doi: 10.1002/prep.201100105]</ref><ref>Walsh, M.R., Walsh, M.E., Hewitt, A.D., Collins, C.M., Bigl, S.R., Gagnon, K., Ampleman, G., Thiboutot, S., Poulin, I. and Brochu, S., 2010. Characterization and Fate of Gun and Rocket Propellant Residues on Testing and Training Ranges: Interim Report 2. (ERDC/CRREL TR-10-13. Also: ESTCP Project ER-1481)  [[media:Walsh-2010 ERDC-CRREL TR-11-15 ESTCP ER-1481.pdf| Report]]</ref>]]
 
+
[[File:Beal1w2 Fig2.png|thumb|left|200 px|Figure 2: A low-order detonation mortar round (top) with surrounding discrete soil samples produced concentrations spanning six orders of magnitude within a 10m by 10m area (bottom). (Photo and data: A.D. Hewitt)]]
Deposition can occur during any one or more of the following range training activities: Firing the munition, detonation, disposal of a malfunctioned munition (referred to as a “blow-in-place” [BIP] operation), and disposal of excess propellant charges (Fig. 1). Propellants, explosive loads, and pyrotechnic loads or tracers all contain energetic materials that can be recovered following a training activity.
 
[[File:Walsh-Article 1-Figure 1.PNG|thumbnail|right|Figure 1. Range ordnance disposal operation. Blow-in-place (BIP) operations often result in significant energetics deposition.]]
 
  
==Determining Energetics Deposition==
+
Munitions constituents are released on military testing and training ranges through several common mechanisms. Some are locally dispersed as solid particles from incomplete combustion during firing and detonation. Also, small residual particles containing propellant compounds (e.g., [[Wikipedia: Nitroglycerin | nitroglycerin [NG]]] and [[Wikipedia: 2,4-Dinitrotoluene | 2,4-dinitrotoluene [2,4-DNT]]]) are distributed in front of and surrounding target practice firing lines (Figure 1). At impact areas and demolition areas, high order detonations typically yield very small amounts (<1 to 10 mg/round) of residual high explosive compounds (e.g., [[Wikipedia: TNT | TNT ]], [[Wikipedia: RDX | RDX ]] and [[Wikipedia: HMX | HMX ]]) that are distributed up to and sometimes greater than) 24 m from the site of detonation<ref name= "Walsh2017">Walsh, M.R., Temple, T., Bigl, M.F., Tshabalala, S.F., Mai, N. and Ladyman, M., 2017. Investigation of Energetic Particle Distribution from High‐Order Detonations of Munitions. Propellants, Explosives, Pyrotechnics, 42(8), pp.932-941. [https://doi.org/10.1002/prep.201700089 doi: 10.1002/prep.201700089] [[media: Walsh-2017-High-Order-Detonation-Residues-Particle-Distribution-PEP.pdf| Report.pdf]]</ref>.
The efficiency of a detonation will have a major influence on the environmental impact of that munition on a training range. Detonation efficiency can be characterized in several manners. Commonly used methods include measuring the shock (blast) wave intensity, measuring the fragmentation size and pattern, and estimating energetic residues from detonation combustion products. A new approach is to use detonation residues deposition mass estimates to directly determine environmental impact.
 
  
Mass deposition refers to the mass of energetics remaining after an operation involving munitions is completed. These energetic residues are measured on the surface of ranges or in surface and groundwater<ref>Jenkins, T.F., Hewitt, A.D., Grant, C.L., Thiboutot, S., Ampleman, G., Walsh, M.E., Ranney, T.A., Ramsey, C.A., Palazzo, A.J. and Pennington, J.C., 2006. Identity and distribution of residues of energetic compounds at army live-fire training ranges. Chemosphere, 63(8), pp.1280-1290. [http://dx.doi.org/10.1016/j.chemosphere.2005.09.066 doi: 10.1016/j.chemosphere.2005.09.066]</ref><ref>Thiboutot, S, Ampleman, G. Brochu, S., Diaz, E, Martel, R., Hawari, J., Sunahara, G., Walsh, MR, and Walsh, ME, 2013. Canadian programme on the environmental impacts of munitions. 1st European Conference on Defence and the Environment, Helsinki, Finland. [http://www.environmentalrestoration.wiki/images/3/37/Thiboutot-2013-Canadian_programme_on_the_environmental_impacts_of_munitions.pdf Presentation]</ref>. The residues mass may be measured as estimated total mass remaining, as a percentage of the original mass of energetics involved in that operation for the munition, or as a soil concentration. Soil concentrations were originally examined, but it was not possible to parse out the sources of the residues or the contribution a specific munition or munition type had on the overall deposition.
+
Low-order detonations and duds are thought to be the primary source of munitions constituents on ranges<ref>Hewitt, A.D., Jenkins, T.F., Walsh, M.E., Walsh, M.R. and Taylor, S., 2005. RDX and TNT residues from live-fire and blow-in-place detonations. Chemosphere, 61(6), pp.888-894. [https://doi.org/10.1016/j.chemosphere.2005.04.058 doi: 10.1016/j.chemosphere.2005.04.058]</ref><ref>Walsh, M.R., Walsh, M.E., Poulin, I., Taylor, S. and Douglas, T.A., 2011. Energetic residues from the detonation of common US ordnance. International Journal of Energetic Materials and Chemical Propulsion, 10(2). [https://doi.org/10.1615/intjenergeticmaterialschemprop.2012004956 doi: 10.1615/IntJEnergeticMaterialsChemProp.2012004956] [[media:Walsh-2011-Energetic-Residues-Common-US-Ordnance.pdf| Report.pdf]]</ref>. Duds are initially intact but may become perforated or fragmented into micrometer to centimeter;o0i0k-sized particles by nearby detonations<ref>Walsh, M.R., Thiboutot, S., Walsh, M.E., Ampleman, G., Martel, R., Poulin, I. and Taylor, S., 2011. Characterization and fate of gun and rocket propellant residues on testing and training ranges (No. ERDC/CRREL-TR-11-13). Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) TR-11-13, Hanover, NH, USA. [[media:Epa-2006-method-8330b.pdf| Report.pdf]]</ref>. Low-order detonations can scatter micrometer to centimeter-sized particles up to 20 m from the site of detonation<ref name= "Taylor2004">Taylor, S., Hewitt, A., Lever, J., Hayes, C., Perovich, L., Thorne, P. and Daghlian, C., 2004. TNT particle size distributions from detonated 155-mm howitzer rounds. Chemosphere, 55(3), pp.357-367.[[media:Taylor-2004 TNT PSDs.pdf| Report.pdf]]</ref>
 
The need to detect very small masses of energetics led to testing of munitions on a clean, uncontaminated surface, snow or ice, which allows for quantification of energetics residues on a per-round basis without interference from past training activities. The ability to develop an energetics residue mass estimate for a single round enabled the determination of the efficiency of a round with respect to specific operations, such as firing, detonation, or disposal. Refinement, and in some cases development, of analytical methods for propellants and explosives enabled the breakdown of efficiencies into those for individual energetic compounds within formulations. This gives a more detailed indication of where problems may occur during training as well as which operations or munitions will have less impacts on ranges and thus enable sustainable range operations.
 
  
==Mass Deposition Experiments on Snow==
+
The particulate nature of munitions constituents in the environment presents a distinct challenge to representative soil sampling. Figure 2 shows an array of discrete soil samples collected around the site of a low-order detonation – resultant soil concentrations vary by orders of magnitude within centimeters of each other. The inadequacy of discrete sampling is apparent in characterization studies from actual ranges which show wide-ranging concentrations and poor precision (Table 1).
[[File:Walsh-Article 1-Figure 2.PNG|thumbnail|right|Figure 2. Post-detonation residues deposition footprint and sampling residues on snow-covered ice.]]
 
Mass deposition measurements of munitions detonations first occurred in response to the closure of the Eagle River Flats (ERF) impact area on Fort Richardson in Alaska<ref>Racine, C.H., Walsh, M.E., Roebuck, B.D., Collins, C.M., Calkins, D., Reitsma, L., Buchli, P. and Goldfarb, G., 1992. White phosphorus poisoning of waterfowl in an Alaskan salt marsh. Journal of Wildlife Diseases, 28(4), pp.669-673. [http://dx.doi.org/10.7589/0090-3558-28.4.669 doi: 10.7589/0090-3558-28.4.669]</ref>. Howitzer rounds were fired into the Flats in winter to try to determine if explosives or white phosphorus could be detected in the residues deposited on the snow surface<ref>Collins, C.M. and Calkins, D.J., 1995. Winter tests of artillery firing into Eagle River Flats, Fort Richardson, Alaska. US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory. [http://www.environmentalrestoration.wiki/images/d/dd/Collins-1995-Winter_tests_of_artillery_firing_into_Eagle_River_Flats.pdf Report pdf]</ref>. A sampling process was developed for residues on snow, but sampling bias and cross-contamination from prior range activities proved problematic until testing was moved to an impact area underlain by ice in 2002 (Fig. 2) <ref>Jenkins, T.F., Walsh, M.E., Miyares, P.H., Hewitt, A.D., Collins, N.H. and Ranney, T.A., 2002. Use of snow-covered ranges to estimate explosives residues from high-order detonations of army munitions. Thermochimica Acta, 384(1), pp.173-185. [http://dx.doi.org/10.1016/S0040-6031(01)00803-6 doi: 10.1016/S0040-6031(01)00803-6]</ref>. In 2004, winter tests conducted on snow-covered ice by at the ERF impact area demonstrated that estimates of per-round energetic residues can be obtained using the recently developed, multi-increment sampling protocol<ref name= "Walsh2005">Walsh, M.R., Walsh, M.E., Ramsey, C.A. and Jenkins, T.F., 2005. An examination of protocols for the collection of munitions-derived explosives residues on snow-covered ice (No. ERDC/CRREL-TR-05-8). US Army Cold Regions Research and Engineering Laboratory, Hanover, NH USA. [http://www.environmentalrestoration.wiki/images/5/5e/walsh-2005-An_Examination_of_protocols_for_explosives_residues.pdf Report pdf]</ref>. All detonation tests have since been conducted using a variation of this method<ref>Walsh, M.R., Walsh, M.E. and Ramsey, C.A., 2012. Measuring energetic contaminant deposition rates on snow. Water, Air, & Soil Pollution, 223(7), pp.3689-3699. [http://dx.doi.org/10.1007/s11270-012-1141-5 doi: 10.1007/s11270-012-1141-5]</ref>. The method is constantly refined, with several quality assurance procedures incorporated, as well as streamlining of the initial sample processing and reduction of cross contamination of samples in the field and the lab.
 
  
Results for 20 years of detonation testing have been compiled into a database. Munitions tested include howitzer, tank, and mortar rounds, hand and rifle grenades, demolitions materials, mines, and rockets. Tests include live-fire, blow-in-place (BIP), simulated and actual low-order detonations, and close-proximity detonation testing. Testing of newly developed insensitive munitions is now being conducted using command detonations of the rounds rather than firing them into the impact area as the rounds are in the process of certification. An excerpt from the database is shown in Table 1. The full database is much more detailed, with data on each energetic component in the explosive formulation.
+
In comparison to discrete sampling, incremental sampling tends to yield reproducible concentrations (low relative standard deviation [RSD]) that statistically better represent an area of interest<ref name= "Hewitt2009"/>.
  
{| class="wikitable" style="margin-left: auto; margin-right: auto; border: none;"
+
{| class="wikitable" style="float: right; text-align: center; margin-left: auto; margin-right: auto;"
|-
+
|+ Table 1. Soil Sample Concentrations and Precision from Military Ranges Using Discrete and Incremental Sampling. (Data from Taylor et al. <ref name= "Taylor2011"/> and references therein.)
!style="background-color:#CEE0F2;"| Weapon Size and Type(Explosive filler formulation)!!style="background-color:#CEE0F2;"| Analyte<sup>1</sup> !!style="background-color:#CEE0F2;"| Rounds Sampled!!style="background-color:#CEE0F2;"|Residues Mass (mg)<sup>2</sup>!!style="background-color:#CEE0F2;"|References
 
 
|-
 
|-
| colspan="12" style="color:black;text-align:left;"|'''High-Order Detonations'''
+
! Military Range Type !! Analyte !! Range<br/>(mg/kg) !! Median<br/>(mg/kg) !! RSD<br/>(%)
 
|-
 
|-
|60-mm Mortar (Comp-B)|| RDX|| 12|| 0.073|| Walsh et al., 2006<ref>Walsh, M.R., Walsh, M.E., Ramsey, C.A., Rachow, R.J., Zufelt, J.E., Collins, C.M., Gelvin, A.B., Perron, N.M. and Saari, S.P., 2006. Energetic residues depositions from 60-mm and 81-mm mortars. ERDC/CRREL Technical Report TR-06-10. [http://www.environmentalrestoration.wiki/images/2/2a/Walsh-2006-EnergeticResiduesDeposition.PDF Report pdf]</ref> and Walsh et al., 2011<ref name= "Walsh2011"/>
+
| colspan="5" style="text-align: left;" | '''Discrete Samples'''
 
|-
 
|-
| 60-mm Mortar (Comp-B)|| TNT|| || BDL||  
+
| Artillery FP || 2,4-DNT || <0.04 – 6.4 || 0.65 || 110
 
|-
 
|-
| 60-mm Mortar (PAX-21)|| RDX|| 7|| 7.1|| Walsh et al., 2013<ref name= "Walsh2013"/>, and Walsh et al., 2014<ref>Walsh, M.E., Walsh, M.R., Taylor, S. and Ramsey, C.A., 2014, May. 4.0 Deposition of DNAN and RDX from PAX-21 and IMX-104 Detonations. In Jannaf Workshop Proceedings-Fate, Transport and Effects of Insensitive Munitions: Issues and Recent Data (p. 23). OCLC Number: 899521393.</ref>
+
| Antitank Rocket || HMX || 5.8 – 1,200 || 200 || 99
 
|-
 
|-
| 60-mm Mortar (PAX-21)|| DNAN|| || 9.2||  
+
| Bombing || TNT || 0.15 – 780 || 6.4 || 274
 
|-
 
|-
| 60-mm Mortar (PAX-21)|| AP|| || 14,000.||  
+
| Mortar || RDX || <0.04 – 2,400 || 1.7 || 441
 
|-
 
|-
| 81-mm Mortar (Comp-B)|| RDX|| 7|| 8.0|| Walsh et al., 2011<ref name= "Walsh2011"/>, and Hewitt et al., 2005<ref name= "Hewitt2005">Hewitt, A.D., Jenkins, T.F., Walsh, M.E., Walsh, M.R. and Taylor, S., 2005. RDX and TNT residues from live-fire and blow-in-place detonations. Chemosphere, 61(6), pp.888-894. [http://dx.doi.org/10.1016/j.chemosphere.2005.04.058 doi: 10.1016/j.chemosphere.2005.04.058]</ref>
+
| Artillery || RDX || <0.04 – 170 || <0.04 || 454
 
|-
 
|-
| 81-mm Mortar (Comp-B)|| TNT|| || BDL||  
+
| colspan="5" style="text-align: left;" | '''Incremental Samples*'''
 
|-
 
|-
| 81-mm Mortar (IMX-104)|| RDX|| 9|| 8.0|| Walsh et al., 2014<ref name= "Walsh2014.2">Walsh, M.R., Walsh, M.E., Ramsey, C.A., Thiboutot, S., Ampleman, G., Diaz, E. and Zufelt, J.E., 2014. Energetic Residues from the Detonation of IMX‐104 Insensitive Munitions. Propellants, Explosives, Pyrotechnics, 39(2), pp.243-250.  [http://dx.doi.org/10.1002/prep.201300095 doi: 10.1002/prep.201300095]</ref>
+
| Artillery FP || 2,4-DNT || 0.60 – 1.4 || 0.92 || 26
 
|-
 
|-
| 81-mm Mortar (IMX-104)|| DNAN|| || 8.0||  
+
| Bombing || TNT || 13 – 17 || 14 || 17
 
|-
 
|-
| 81-mm Mortar (IMX-104)|| NTO|| || 540.||
+
| Artillery/Bombing || RDX || 3.9 – 9.4 || 4.8 || 38
|-
 
| 105-mm Howitzer (Comp-B)|| RDX|| 13|| 0.095|| Walsh et al., 2011<ref name= "Walsh2011"/>, and Hewitt et al., 2005<ref name= "Hewitt2005"/>
 
|-
 
| 105-mm Howitzer (Comp-B)|| TNT|| || BDL||
 
|-
 
| 155-mm Howitzer (Comp-B)|| RDX|| 7|| 0.30|| Walsh et al., 2011<ref name= "Walsh2011"/>, and Walsh et al., 2005<ref>Walsh, M.R., Taylor, S., Walsh, M.E., Bigl, S., Bjella, K., Douglas, T., Gelvin, A., Lambert, D., Perron, N. and Saari, S., 2005. Residues from live fire detonations of 155-mm howitzer rounds. ERDC/CRREL Technical Report TR-05-14.[http://www.environmentalrestoration.wiki/images/a/ac/Walsh-2005-Residues_from_Live_Fire_Detonations_of_155-mm.pdf Report pdf]</ref>
 
|-
 
| colspan="12" style="color:black;text-align:left;"|'''BIP Detonations'''
 
|-
 
| 60-mm Mortar (Comp-B)|| RDX|| 7|| 200.|| Walsh et al., 2011<ref name= "Walsh2011"/>, and Walsh, 2007<ref name= "Walsh2007">Walsh, M.R., 2007. Explosives residues resulting from the detonation of common military munitions: 2002-2006. ERDC/CRREL-TR-07-2. Hanover NH Cold Regions Research and Engineering Lab. [http://www.environmentalrestoration.wiki/images/7/7f/Walsh-2007-Explosives_Residues_TR-07-02.pdf Report pdf]</ref>
 
|-
 
|  60-mm Mortar (Comp-B)|| TNT|| || BDL||
 
|-
 
| 60-mm Mortar (PAX-21)|| RDX|| 7|| 860|| Walsh et al., 2013<ref>Walsh, M.R., Walsh, M.E., Ramsey, C.A., Brochu, S., Thiboutot, S. and Ampleman, G., 2013. Perchlorate contamination from the detonation of insensitive high-explosive rounds. Journal of hazardous materials, 262, pp.228-233. [http://dx.doi.org/10.1016/j.jhazmat.2013.08.045 doi: 10.1016/j.jhazmat.2013.08.04]</ref>
 
|-
 
| 60-mm Mortar (PAX-21)|| DNAN|| || 740||
 
|-
 
| 60-mm Mortar (PAX-21)|| AP|| || 35,000.||
 
|-
 
| 81-mm Mortar (Comp-B)|| RDX|| 7|| 150.|| Walsh et al., 2011<ref name= "Walsh2011"/>, and Walsh, 2007<ref name= "Walsh2007"/>
 
|-
 
| 81-mm Mortar (Comp-B)|| TNT|| || BDL||
 
|-
 
| 81-mm Mortar (IMX-104)|| RDX|| 9|| 2,100.|| Walsh et al., 2011<ref name= "Walsh2011"/>, and Walsh et al., 2014<ref name= "Walsh2014.2"/>
 
|-
 
| 81-mm Mortar (IMX-104) || DNAN|| || 5,000.||
 
|-
 
| 81-mm Mortar (IMX-104) || NTO|| || 45,000.||
 
|-
 
| 105-mm Howitzer (Comp-B)|| RDX|| 13|| 50.|| Walsh et al., 2011<ref name= "Walsh2011"/>
 
|-
 
| 105-mm Howitzer (Comp-B)|| TNT|| || BDL||
 
|-
 
| 155-mm Howitzer (Comp-B)|| RDX|| 7|| 15.|| Walsh et al., 2005<ref name= "Walsh2005"/>, and Walsh et al., 2011<ref name= "Walsh2011"/>
 
|-
 
| 155-mm Howitzer (Comp-B)|| TNT|| || 7||  
 
 
|-  
 
|-  
|colspan="12" style="color:black;text-align:left;"|<sup>1</sup>Analytes:  RDX: Royal demolition explosive (1,3,5-Trinitroperhydro-1,3,5-triazine / (O<sub>2</sub>NNCH<sub>2</sub>)<sub>3</sub>), TNT: 2,4,6-Trinitrotoluene (2-Methyl-1,3,5-trinitrobenzene / C<sub>6</sub>H<sub>2</sub>(NO<sub>2</sub>)<sub>3</sub>CH<sub>3</sub>), DNAN: 2,4-Dinitroanisole (1-Methoxy-2,4-dinitrobenzene / C<sub>7</sub>H<sub>6</sub>N<sub>2</sub>O<sub>5</sub>), NTO: Nitrotriazalone (3-Nitro-1,2,4-triazol-5-one / C<sub>2</sub>N<sub>4</sub>O<sub>3</sub>), AP: Ammonium Perchlorate (NH<sub>4</sub>ClO<sub>4</sub>)
+
| Thermal Treatment || HMX || 3.96 – 4.26 || 4.16 || 4
<sup>2</sup>BDL: Below Detection Limits
 
 
|-
 
|-
|colspan="12" style="color:black;text-align:left;"|Table 1.  Excerpt from the detonation residues database.
+
| colspan="5" style="text-align: left; background-color: white;" | * For incremental samples, 30-100 increments and 3-10 replicate samples were collected.
 
|}
 
|}
  
[[File:Walsh-Article 1-Figure 3.PNG|thumbnail|right|Figure 3. Firing position tests: Anti-tank rocket (residues deposited primarily behind weapon) and tank (residues deposited in front of weapon)]]The same methods used for collecting post-detonation residues have been applied to sampling for propellants at firing positions. For firing positions, the area does not need to be underlain by ice. Snow cover is sufficient (Fig. 3). The mass of propellant residues resulting from firing most weapon systems is quite low, so multiple rounds (up to 200) are fired from a single firing position to obtain sufficient residues to derive an estimate of residues per round. Some direct-fire weapon systems, such as tanks, will severely agitate the snow surface in front of the gun. In these cases, snow samples will need to be taken at several depths to recover the residues. An excerpt from the firing point residues database is shown in Table 2.
+
==Incremental Sampling Approach==
 +
ISM is a requisite for representative and reproducible sampling of training ranges, but it is an involved process that is detailed thoroughly elsewhere<ref name= "Hewitt2009"/><ref name= "Taylor2011"/><ref name= "USEPA2006M"/>. In short, ISM involves the collection of many (30 to >100) increments in a systematic pattern within a decision unit (DU). The DU may cover an area where releases are thought to have occurred or may represent an area relevant to ecological receptors (e.g., sensitive species). Figure 3 shows the ISM sampling pattern in a simplified (5x5 square) DU. Increments are collected at a random starting point with systematic distances between increments. Replicate samples can be collected by starting at a different random starting point, often at a different corner of the DU. Practically, this grid pattern can often be followed with flagging or lathe marking DU boundaries and/or sampling lanes and with individual pacing keeping systematic distances between increments. As an example, an artillery firing point might include a 100x100 m DU with 81 increments.
 +
[[File:Beal1w2 Fig3.png|thumb|200 px|left|Figure 3. Example ISM sampling pattern on a square decision unit. Replicates are collected in a systematic pattern from a random starting point at a corner of the DU. Typically more than the 25 increments shown are collected]]
 +
 
 +
DUs can vary in shape (Figure 4), size, number of increments, and number of replicates according to a project’s data quality objectives.
 +
 
 +
[[File:Beal1w2 Fig4.png|thumb|right|250 px|Figure 4: Incremental sampling of a circular DU on snow shows sampling lanes with a two-person team in process of collecting the second replicate in a perpendicular path to the first replicate. (Photo: Matthew Bigl)]]
 +
 
 +
==Sampling Tools==
 +
In many cases, energetic compounds are expected to reside within the soil surface. Figure 5 shows soil depth profiles on some studied impact areas and firing points. Overall, the energetic compound concentrations below 5-cm soil depth are negligible relative to overlying soil concentrations. For conventional munitions, this is to be expected as the energetic particles are relatively insoluble, and any dissolved compounds readily adsorb to most soils<ref>Pennington, J.C., Jenkins, T.F., Ampleman, G., Thiboutot, S., Brannon, J.M., Hewitt, A.D., Lewis, J., Brochu, S., 2006. Distribution and fate of energetics on DoD test and training ranges: Final Report. ERDC TR-06-13, Vicksburg, MS, USA. Also: SERDP/ESTCP Project ER-1155. [[media:Pennington-2006_ERDC-TR-06-13_ESTCP-ER-1155-FR.pdf| Report.pdf]]</ref>. Physical disturbance, as on hand grenade ranges, may require deeper sampling either with a soil profile or a corer/auger.
 +
 
 +
[[File:Beal1w2 Fig5.png|thumb|left|200 px|Figure 5. Depth profiles of high explosive compounds at impact areas (bottom) and of propellant compounds at firing points (top). Data from: Hewitt et al. <ref>Hewitt, A.D., Jenkins, T.F., Ramsey, C.A., Bjella, K.L., Ranney, T.A. and Perron, N.M., 2005. Estimating energetic residue loading on military artillery ranges: Large decision units (No. ERDC/CRREL-TR-05-7). [[media:Hewitt-2005 ERDC-CRREL TR-05-7.pdf| Report.pdf]]</ref> and Jenkins et al. <ref>Jenkins, T.F., Ampleman, G., Thiboutot, S., Bigl, S.R., Taylor, S., Walsh, M.R., Faucher, D., Mantel, R., Poulin, I., Dontsova, K.M. and Walsh, M.E., 2008. Characterization and fate of gun and rocket propellant residues on testing and training ranges (No. ERDC-TR-08-1). [[media:Jenkins-2008 ERDC TR-08-1.pdf| Report.pdf]]</ref>]]
 +
 
 +
Soil sampling with the Cold Regions Research and Engineering Laboratory (CRREL) Multi-Increment Sampling Tool (CMIST) or similar device is an easy way to collect ISM samples rapidly and reproducibly. This tool has an adjustable diameter size corer and adjustable depth to collect surface soil plugs (Figure 6). The CMIST can be used at almost a walking pace (Figure 7) using a two-person sampling team, with one person operating the CMIST and the other carrying the sample container and recording the number of increments collected. The CMIST with a small diameter tip works best in soils with low cohesion, otherwise conventional scoops may be used. Maintaining consistent soil increment dimensions is critical.
 +
 
 +
The sampling tool should be cleaned between replicates and between DUs to minimize potential for cross-contamination<ref>Walsh, M.R., 2009. User’s manual for the CRREL Multi-Increment Sampling Tool. Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) SR-09-1, Hanover, NH, USA.  [[media:Walsh-2009 ERDC-CRREL SR-09-1.pdf | Report.pdf]]</ref>.
 +
 
 +
==Sample Processing==
 +
While only 10 g of soil is typically used for chemical analysis, incremental sampling generates a sample weighing on the order of 1 kg. Splitting of a sample, either in the field or laboratory, seems like an easy way to reduce sample mass; however this approach has been found to produce high uncertainty for explosives and propellants, with a median RSD of 43.1%<ref name= "Hewitt2009"/>. Even greater error is associated with removing a discrete sub-sample from an unground sample. Appendix A in [https://www.epa.gov/sites/production/files/2015-07/documents/epa-8330b.pdf U.S. EPA Method 8330B]<ref name= "USEPA2006M"/> provides details on recommended ISM sample processing procedures.
 +
 
 +
Incremental soil samples are typically air dried over the course of a few days. Oven drying thermally degrades some energetic compounds and should be avoided<ref>Cragin, J.H., Leggett, D.C., Foley, B.T., and Schumacher, P.W., 1985. TNT, RDX and HMX explosives in soils and sediments: Analysis techniques and drying losses. (CRREL Report 85-15) Hanover, NH, USA. [[media:Cragin-1985 CRREL 85-15.pdf| Report.pdf]]</ref>. Once dry, the samples are sieved with a 2-mm screen, with only the less than 2-mm fraction processed further. This size fraction represents the USDA definition of soil. Aggregate soil particles should be broken up and vegetation shredded to pass through the sieve. Samples from impact or demolition areas may contain explosive particles from low order detonations that are greater than 2 mm and should be identified, given appropriate caution, and potentially weighed.
 +
 
 +
The <2-mm soil fraction is typically still ≥1 kg and impractical to extract in full for analysis. However, subsampling at this stage is not possible due to compositional heterogeneity, with the energetic compounds generally present as <0.5 mm particles<ref name= "Walsh2017"/><ref name= "Taylor2004"/>. Particle size reduction is required to achieve a representative and precise measure of the sample concentration. Grinding in a puck mill to a soil particle size <75 µm has been found to be required for representative/reproducible sub-sampling (Figure 8). For samples thought to contain propellant particles, a prolonged milling time is required to break down these polymerized particles and achieve acceptable precision (Figure 9). Due to the multi-use nature of some ranges, a 5-minute puck milling period can be used for all soils. Cooling periods between 1-minute milling intervals are recommended to avoid thermal degradation. Similar to field sampling, sub-sampling is done incrementally by spreading the sample out to a thin layer and collecting systematic random increments of consistent volume to a total mass for extraction of 10 g (Figure 10).
 +
 
 +
<li style="display: inline-block;">[[File:Beal1w2 Fig6.png|thumb|200 px|Figure 6: CMIST soil sampling tool (top) and with ejected increment core using a large diameter tip (bottom).]]</li>
 +
<li style="display: inline-block;">[[File:Beal1w2 Fig7.png|thumb|200 px|Figure 7: Two person sampling team using CMIST, bag-lined bucket, and increment counter. (Photos: Matthew Bigl)]]</li>
 +
<li style="display: inline-block;">[[File:Beal1w2 Fig8.png|thumb|200 px|Figure 8: Effect of machine grinding on RDX and TNT concentration and precision in soil from a hand grenade range. Data from Walsh et al.<ref>Walsh, M.E., Ramsey, C.A. and Jenkins, T.F., 2002. The effect of particle size reduction by grinding on subsampling variance for explosives residues in soil. Chemosphere, 49(10), pp.1267-1273. [https://doi.org/10.1016/S0045-6535(02)00528-3 doi: 10.1016/S0045-6535(02)00528-3]</ref> ]]</li>
 +
<li style="display: inline-block;">[[File:Beal1w2 Fig9.png|thumb|200 px|Figure 9: Effect of puck milling time on 2,4-DNT concentration and precision in soil from a firing point. Data from Walsh et al.<ref>Walsh, M.E., Ramsey, C.A., Collins, C.M., Hewitt, A.D., Walsh, M.R., Bjella, K.L., Lambert, D.J. and Perron, N.M., 2005. Collection methods and laboratory processing of samples from Donnelly Training Area Firing Points, Alaska, 2003 (No. ERDC/CRREL-TR-05-6). [[media:Walsh-2005 ERDC-CRREL TR-05-6.pdf| Report.pdf]]</ref>.]]</li>
 +
<li style="display: inline-block;">[[File:Beal1w2 Fig10.png|thumb|200 px|center|Figure 10: Incremental sub-sampling of a milled soil sample spread out on aluminum foil.]]</li>
  
{| class="wikitable" style="margin-left: auto; margin-right: auto; border: none;"
+
==Analysis==
 +
Soil sub-samples are extracted and analyzed following [[Media: epa-2006-method-8330b.pdf | EPA Method 8330B]]<ref name= "USEPA2006M"/> and [[Media:epa-2007-method-8095.pdf | Method 8095]]<ref name= "USEPA2007M"/> using [[Wikipedia: High-performance liquid chromatography | High Performance Liquid Chromatography (HPLC)]] and [[Wikipedia: Gas chromatography | Gas Chromatography (GC)]], respectively. Common estimated reporting limits for these analysis methods are listed in Table 2.
 +
 
 +
{| class="wikitable" style="float: center; text-align: center; margin-left: auto; margin-right: auto;"
 +
|+ Table 2. Typical Method Reporting Limits for Energetic Compounds in Soil. (Data from Hewitt et al.<ref>Hewitt, A., Bigl, S., Walsh, M., Brochu, S., Bjella, K. and Lambert, D., 2007. Processing of training range soils for the analysis of energetic compounds (No. ERDC/CRREL-TR-07-15). Hanover, NH, USA. [[media:Hewitt-2007 ERDC-CRREL TR-07-15.pdf| Report.pdf]]</ref>)
 
|-
 
|-
!style="background-color:#CEE0F2;"| Weapon Size and Type!!style="background-color:#CEE0F2;"| Analyte<sup>1</sup> !!style="background-color:#CEE0F2;"| Rounds Fired!!style="background-color:#CEE0F2;"|Residues/Round Mass (mg)!!style="background-color:#CEE0F2;"|References
+
! rowspan="2" | Compound
 +
! colspan="2" | Soil Reporting Limit (mg/kg)
 
|-
 
|-
| 9-mm Pistol (Double-base)|| NG|| 100|| 2.1|| Walsh et al., 2012<ref name= "Walsh2012"/>
+
! HPLC (8330)
 +
! GC (8095)
 
|-
 
|-
| 5.56-mm Rifle (Double-base)|| NG|| 100|| 1.8|| Walsh et al., 2012<ref name= "Walsh2012"/>
+
| HMX || 0.04 || 0.01
 
|-
 
|-
| 12.7-mm MG (Double-base)|| NG|| 195|| 11.|| Walsh et al., 2012<ref name= "Walsh2012"/>
+
| RDX || 0.04 || 0.006
 
|-
 
|-
| 40-mm GMG (Double-base)|| NG|| 144|| 76.|| Walsh et al., 2012<ref name= "Walsh2012"/>, and Walsh et al., 2011<ref name= "Walsh2011.2">Walsh, M.E., Walsh, M.R., Taylor, S., Douglas, T.A., Collins, C.M. and Ramsey, C.A., 2011. Accumulation of propellant residues in surface soils of military training range firing points. International Journal of Energetic Materials and Chemical Propulsion, 10(5): pp 421–435. [http://dx.doi.org/10.1615/intjenergeticmaterialschemprop.2012005295 doi: 10.1615/IntJEnergeticMaterialsChemProp.2012005295 ]</ref>
+
| [[Wikipedia: 1,3,5-Trinitrobenzene | TNB]] || 0.04 || 0.003
 
|-
 
|-
| 60-mm Mortar (Double-base)|| NG|| 25|| 0.09|| Walsh et al., 2012<ref name= "Walsh2012"/>, and Walsh et al., 2011<ref name= "Walsh2011.2"/>
+
| TNT || 0.04 || 0.002
 
|-
 
|-
| 81-mm Mortar (Double-base)|| NG|| 61|| 1000.|| Walsh et al., 2012<ref name= "Walsh2012"/>, and Walsh et al., 2011<ref name= "Walsh2011.2"/>
+
| [[Wikipedia: 2,6-Dinitrotoluene | 2,6-DNT]] || 0.08 || 0.002
 
|-
 
|-
| 120-mm Mortar (Double-base)|| NG|| 40|| 350.|| Walsh et al., 2012<ref name= "Walsh2012"/>, and Walsh et al., 2011<ref name= "Walsh2011.2"/>
+
| 2,4-DNT || 0.04 || 0.002
 
|-
 
|-
| 105-mm Tank (Single-base)|| DNT|| 90|| 6.7|| Walsh et al., 2012<ref name= "Walsh2012"/>, and Walsh et al., 2011<ref name= "Walsh2011.2"/>
+
| 2-ADNT || 0.08 || 0.002
 
|-
 
|-
| 84-mm Anti-tank (Double-base)|| NG|| 6|| 95,000.|| Walsh et al., 2012<ref name= "Walsh2012"/>, and Walsh et al., 2011<ref name= "Walsh2011.2"/>
+
| 4-ADNT || 0.08 || 0.002
 
|-
 
|-
| 204-mm Rocket|| AP|| 18|| BDL|| Walsh et al., 2012<ref name= "Walsh2012"/>
+
| NG || 0.1 || 0.01
 
|-
 
|-
| 105-mm Howitzer (Single-base)|| DNT|| 7|| 8.0|| Walsh et al., 2012<ref name= "Walsh2012"/>
+
| [[Wikipedia: Dinitrobenzene | DNB ]] || 0.04 || 0.002
 
|-
 
|-
| 155-mm Howitzer (Single-base)|| DNT|| 70|| 34.|| Walsh et al., 2012<ref name= "Walsh2012"/>
+
| [[Wikipedia: Tetryl | Tetryl ]]  || 0.04 || 0.01
 
|-
 
|-
| 155-mm Howitzer (Triple-base)|| NQ, NG|| 30|| BDL|| Ampleman et al., 2011<ref>Ampleman, G, Thiboutot, S., Marois, A.,  Gagnon, A., Walsh, M.R., Walsh, M.E., Ramsey, C.A.,  and Archambeault, P., 2011.  Propellant residues emitted by triple base ammunition live firing using a British 155-mm howitzer bun at CFB Suffield, Canada. In, MR Walsh et al. Characterization and fate of gun and rocket propellant residues on testing and training ranges. ERDC/CRREL Technical Report TR-11-13, pp 39-76. [http://www.environmentalrestoration.wiki/images/1/10/Ampleman-2011-Characterization_and_fate_of_gun_and_rocket_propellant_residues.pdf Report pdf]</ref>
+
| [[Wikipedia: Pentaerythritol tetranitrate | PETN ]] || 0.2 || 0.016
|-
 
|colspan="12" style="color:black;text-align:left;"|<sup>1</sup>Analytes:  NG: Nitroglycerin (Propane-1,2,3-triyl trinitrate,C<sub>3</sub>H<sub>5</sub>N<sub>3</sub>O<sub>9</sub>); DNT: 2,4-dinitrotoluene, C<sub>₇</sub>H<sub>₆</sub>N<sub>₂</sub>O<sub>₄</sub>; NQ: Nitroguanidine (1-Nitroguanidine, CH<sub>4</sub>N<sub>4</sub>O<sub>2</sub>)
 
|-
 
|colspan="12" style="color:black;text-align:left;"|Table 2. Firing point energetics deposition per round.
 
 
|}
 
|}
 
==Munition Efficiency==
 
The detonation efficiency of munitions has historically been assessed using fragmentation characteristics such as size, shape, velocity, and scatter pattern. The magnitude of the shock or impulse generated by the detonation is also a means for characterizing a detonation. For the Life Cycle Environmental Assessment (LCEA), gaseous byproducts of the detonation are measured to determine consumption of the energetic load. Qualitative characterizations of detonations are also based on a visual assessment of the physical condition of the round following detonation.
 
 
[[File:Walsh-Article 1-Table 3.PNG|thumbnail|right|500 px|Table 3. Detonation efficiency descriptors used by CRREL.]]
 
The ability to quantify the mass of energetics that is consumed during a munitions-based activity allows a new assessment method for the efficiency of that activity. We now know how efficient a detonation or firing activity is in consuming the energetic load because we can measure energetics residues. A valuable assessment can be made of the effectiveness of a particular formulation of energetic materials for a specific operation in conjunction with the visual inspection of the munition or propellant remains. Assessment criteria developed by the US Army Cold Regions Research and Engineering Laboratory (CRREL) characterizes detonation efficiency based on the percent of energetic residues remaining after detonation (Table 3). We can thus standardize a system of detonation characterization based on the consistently measureable residue masses.
 
 
Most munitions tested perform quite well, with detonation efficiencies well within the high-order consumption range (>99.99%) and propellant consumption >95%. There are problems with both anti-tank rockets, with efficiencies <30% in some cases, and the new insensitive munitions, which have energetic compounds in the explosive formulations with 70-80% efficiencies (Table 4). 
 
 
 
  
 
==References==
 
==References==
 
 
<references/>
 
<references/>
  
 
==See Also==
 
==See Also==
 +
*[https://itrcweb.org/ Interstate Technology and Regulatory Council]
 +
*[http://www.hawaiidoh.org/tgm.aspx Hawaii Department of Health]
 +
*[http://envirostat.org/ Envirostat]

Latest revision as of 18:58, 29 April 2020

The heterogeneous distribution of munitions constituents, released as particles from munitions firing and detonations on military training ranges, presents challenges for representative soil sample collection and for defensible decision making. Military range characterization studies and the development of the incremental sampling methodology (ISM) have enabled the development of recommended methods for soil sampling that produce representative and reproducible concentration data for munitions constituents. This article provides a broad overview of recommended soil sampling and processing practices for analysis of munitions constituents on military ranges.

Related Article(s):


CONTRIBUTOR(S): Dr. Samuel Beal


Key Resource(s):

Introduction

Figure 1: Downrange distance of visible propellant plume on snow from the firing of different munitions. Note deposition behind firing line for the 84-mm rocket. Data from: Walsh et al.[5][6]
Figure 2: A low-order detonation mortar round (top) with surrounding discrete soil samples produced concentrations spanning six orders of magnitude within a 10m by 10m area (bottom). (Photo and data: A.D. Hewitt)

Munitions constituents are released on military testing and training ranges through several common mechanisms. Some are locally dispersed as solid particles from incomplete combustion during firing and detonation. Also, small residual particles containing propellant compounds (e.g., nitroglycerin [NG] and 2,4-dinitrotoluene [2,4-DNT]) are distributed in front of and surrounding target practice firing lines (Figure 1). At impact areas and demolition areas, high order detonations typically yield very small amounts (<1 to 10 mg/round) of residual high explosive compounds (e.g., TNT , RDX and HMX ) that are distributed up to and sometimes greater than) 24 m from the site of detonation[7].

Low-order detonations and duds are thought to be the primary source of munitions constituents on ranges[8][9]. Duds are initially intact but may become perforated or fragmented into micrometer to centimeter;o0i0k-sized particles by nearby detonations[10]. Low-order detonations can scatter micrometer to centimeter-sized particles up to 20 m from the site of detonation[11]

The particulate nature of munitions constituents in the environment presents a distinct challenge to representative soil sampling. Figure 2 shows an array of discrete soil samples collected around the site of a low-order detonation – resultant soil concentrations vary by orders of magnitude within centimeters of each other. The inadequacy of discrete sampling is apparent in characterization studies from actual ranges which show wide-ranging concentrations and poor precision (Table 1).

In comparison to discrete sampling, incremental sampling tends to yield reproducible concentrations (low relative standard deviation [RSD]) that statistically better represent an area of interest[2].

Table 1. Soil Sample Concentrations and Precision from Military Ranges Using Discrete and Incremental Sampling. (Data from Taylor et al. [1] and references therein.)
Military Range Type Analyte Range
(mg/kg)
Median
(mg/kg)
RSD
(%)
Discrete Samples
Artillery FP 2,4-DNT <0.04 – 6.4 0.65 110
Antitank Rocket HMX 5.8 – 1,200 200 99
Bombing TNT 0.15 – 780 6.4 274
Mortar RDX <0.04 – 2,400 1.7 441
Artillery RDX <0.04 – 170 <0.04 454
Incremental Samples*
Artillery FP 2,4-DNT 0.60 – 1.4 0.92 26
Bombing TNT 13 – 17 14 17
Artillery/Bombing RDX 3.9 – 9.4 4.8 38
Thermal Treatment HMX 3.96 – 4.26 4.16 4
* For incremental samples, 30-100 increments and 3-10 replicate samples were collected.

Incremental Sampling Approach

ISM is a requisite for representative and reproducible sampling of training ranges, but it is an involved process that is detailed thoroughly elsewhere[2][1][3]. In short, ISM involves the collection of many (30 to >100) increments in a systematic pattern within a decision unit (DU). The DU may cover an area where releases are thought to have occurred or may represent an area relevant to ecological receptors (e.g., sensitive species). Figure 3 shows the ISM sampling pattern in a simplified (5x5 square) DU. Increments are collected at a random starting point with systematic distances between increments. Replicate samples can be collected by starting at a different random starting point, often at a different corner of the DU. Practically, this grid pattern can often be followed with flagging or lathe marking DU boundaries and/or sampling lanes and with individual pacing keeping systematic distances between increments. As an example, an artillery firing point might include a 100x100 m DU with 81 increments.

Figure 3. Example ISM sampling pattern on a square decision unit. Replicates are collected in a systematic pattern from a random starting point at a corner of the DU. Typically more than the 25 increments shown are collected

DUs can vary in shape (Figure 4), size, number of increments, and number of replicates according to a project’s data quality objectives.

Figure 4: Incremental sampling of a circular DU on snow shows sampling lanes with a two-person team in process of collecting the second replicate in a perpendicular path to the first replicate. (Photo: Matthew Bigl)

Sampling Tools

In many cases, energetic compounds are expected to reside within the soil surface. Figure 5 shows soil depth profiles on some studied impact areas and firing points. Overall, the energetic compound concentrations below 5-cm soil depth are negligible relative to overlying soil concentrations. For conventional munitions, this is to be expected as the energetic particles are relatively insoluble, and any dissolved compounds readily adsorb to most soils[12]. Physical disturbance, as on hand grenade ranges, may require deeper sampling either with a soil profile or a corer/auger.

Figure 5. Depth profiles of high explosive compounds at impact areas (bottom) and of propellant compounds at firing points (top). Data from: Hewitt et al. [13] and Jenkins et al. [14]

Soil sampling with the Cold Regions Research and Engineering Laboratory (CRREL) Multi-Increment Sampling Tool (CMIST) or similar device is an easy way to collect ISM samples rapidly and reproducibly. This tool has an adjustable diameter size corer and adjustable depth to collect surface soil plugs (Figure 6). The CMIST can be used at almost a walking pace (Figure 7) using a two-person sampling team, with one person operating the CMIST and the other carrying the sample container and recording the number of increments collected. The CMIST with a small diameter tip works best in soils with low cohesion, otherwise conventional scoops may be used. Maintaining consistent soil increment dimensions is critical.

The sampling tool should be cleaned between replicates and between DUs to minimize potential for cross-contamination[15].

Sample Processing

While only 10 g of soil is typically used for chemical analysis, incremental sampling generates a sample weighing on the order of 1 kg. Splitting of a sample, either in the field or laboratory, seems like an easy way to reduce sample mass; however this approach has been found to produce high uncertainty for explosives and propellants, with a median RSD of 43.1%[2]. Even greater error is associated with removing a discrete sub-sample from an unground sample. Appendix A in U.S. EPA Method 8330B[3] provides details on recommended ISM sample processing procedures.

Incremental soil samples are typically air dried over the course of a few days. Oven drying thermally degrades some energetic compounds and should be avoided[16]. Once dry, the samples are sieved with a 2-mm screen, with only the less than 2-mm fraction processed further. This size fraction represents the USDA definition of soil. Aggregate soil particles should be broken up and vegetation shredded to pass through the sieve. Samples from impact or demolition areas may contain explosive particles from low order detonations that are greater than 2 mm and should be identified, given appropriate caution, and potentially weighed.

The <2-mm soil fraction is typically still ≥1 kg and impractical to extract in full for analysis. However, subsampling at this stage is not possible due to compositional heterogeneity, with the energetic compounds generally present as <0.5 mm particles[7][11]. Particle size reduction is required to achieve a representative and precise measure of the sample concentration. Grinding in a puck mill to a soil particle size <75 µm has been found to be required for representative/reproducible sub-sampling (Figure 8). For samples thought to contain propellant particles, a prolonged milling time is required to break down these polymerized particles and achieve acceptable precision (Figure 9). Due to the multi-use nature of some ranges, a 5-minute puck milling period can be used for all soils. Cooling periods between 1-minute milling intervals are recommended to avoid thermal degradation. Similar to field sampling, sub-sampling is done incrementally by spreading the sample out to a thin layer and collecting systematic random increments of consistent volume to a total mass for extraction of 10 g (Figure 10).

  • Figure 6: CMIST soil sampling tool (top) and with ejected increment core using a large diameter tip (bottom).
  • Figure 7: Two person sampling team using CMIST, bag-lined bucket, and increment counter. (Photos: Matthew Bigl)
  • Figure 8: Effect of machine grinding on RDX and TNT concentration and precision in soil from a hand grenade range. Data from Walsh et al.[17]
  • Figure 9: Effect of puck milling time on 2,4-DNT concentration and precision in soil from a firing point. Data from Walsh et al.[18].
  • Figure 10: Incremental sub-sampling of a milled soil sample spread out on aluminum foil.
  • Analysis

    Soil sub-samples are extracted and analyzed following EPA Method 8330B[3] and Method 8095[4] using High Performance Liquid Chromatography (HPLC) and Gas Chromatography (GC), respectively. Common estimated reporting limits for these analysis methods are listed in Table 2.

    Table 2. Typical Method Reporting Limits for Energetic Compounds in Soil. (Data from Hewitt et al.[19])
    Compound Soil Reporting Limit (mg/kg)
    HPLC (8330) GC (8095)
    HMX 0.04 0.01
    RDX 0.04 0.006
    TNB 0.04 0.003
    TNT 0.04 0.002
    2,6-DNT 0.08 0.002
    2,4-DNT 0.04 0.002
    2-ADNT 0.08 0.002
    4-ADNT 0.08 0.002
    NG 0.1 0.01
    DNB 0.04 0.002
    Tetryl 0.04 0.01
    PETN 0.2 0.016

    References

    1. ^ 1.0 1.1 1.2 Taylor, S., Jenkins, T.F., Bigl, S., Hewitt, A.D., Walsh, M.E. and Walsh, M.R., 2011. Guidance for Soil Sampling for Energetics and Metals (No. ERDC/CRREL-TR-11-15). Report.pdf
    2. ^ 2.0 2.1 2.2 2.3 Hewitt, A.D., Jenkins, T.F., Walsh, M.E., Bigl, S.R. and Brochu, S., 2009. Validation of sampling protocol and the promulgation of method modifications for the characterization of energetic residues on military testing and training ranges (No. ERDC/CRREL-TR-09-6). Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) TR-09-6, Hanover, NH, USA. Report.pdf
    3. ^ 3.0 3.1 3.2 3.3 U.S. Environmental Protection Agency (USEPA), 2006. Method 8330B (SW-846): Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC), Rev. 2. Washington, D.C. Report.pdf
    4. ^ 4.0 4.1 U.S. Environmental Protection Agency (US EPA), 2007. Method 8095 (SW-846): Explosives by Gas Chromatography. Washington, D.C. Report.pdf
    5. ^ Walsh, M.R., Walsh, M.E., Ampleman, G., Thiboutot, S., Brochu, S. and Jenkins, T.F., 2012. Munitions propellants residue deposition rates on military training ranges. Propellants, Explosives, Pyrotechnics, 37(4), pp.393-406. doi: 10.1002/prep.201100105
    6. ^ Walsh, M.R., Walsh, M.E., Hewitt, A.D., Collins, C.M., Bigl, S.R., Gagnon, K., Ampleman, G., Thiboutot, S., Poulin, I. and Brochu, S., 2010. Characterization and Fate of Gun and Rocket Propellant Residues on Testing and Training Ranges: Interim Report 2. (ERDC/CRREL TR-10-13. Also: ESTCP Project ER-1481) Report
    7. ^ 7.0 7.1 Walsh, M.R., Temple, T., Bigl, M.F., Tshabalala, S.F., Mai, N. and Ladyman, M., 2017. Investigation of Energetic Particle Distribution from High‐Order Detonations of Munitions. Propellants, Explosives, Pyrotechnics, 42(8), pp.932-941. doi: 10.1002/prep.201700089 Report.pdf
    8. ^ Hewitt, A.D., Jenkins, T.F., Walsh, M.E., Walsh, M.R. and Taylor, S., 2005. RDX and TNT residues from live-fire and blow-in-place detonations. Chemosphere, 61(6), pp.888-894. doi: 10.1016/j.chemosphere.2005.04.058
    9. ^ Walsh, M.R., Walsh, M.E., Poulin, I., Taylor, S. and Douglas, T.A., 2011. Energetic residues from the detonation of common US ordnance. International Journal of Energetic Materials and Chemical Propulsion, 10(2). doi: 10.1615/IntJEnergeticMaterialsChemProp.2012004956 Report.pdf
    10. ^ Walsh, M.R., Thiboutot, S., Walsh, M.E., Ampleman, G., Martel, R., Poulin, I. and Taylor, S., 2011. Characterization and fate of gun and rocket propellant residues on testing and training ranges (No. ERDC/CRREL-TR-11-13). Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) TR-11-13, Hanover, NH, USA. Report.pdf
    11. ^ 11.0 11.1 Taylor, S., Hewitt, A., Lever, J., Hayes, C., Perovich, L., Thorne, P. and Daghlian, C., 2004. TNT particle size distributions from detonated 155-mm howitzer rounds. Chemosphere, 55(3), pp.357-367. Report.pdf
    12. ^ Pennington, J.C., Jenkins, T.F., Ampleman, G., Thiboutot, S., Brannon, J.M., Hewitt, A.D., Lewis, J., Brochu, S., 2006. Distribution and fate of energetics on DoD test and training ranges: Final Report. ERDC TR-06-13, Vicksburg, MS, USA. Also: SERDP/ESTCP Project ER-1155. Report.pdf
    13. ^ Hewitt, A.D., Jenkins, T.F., Ramsey, C.A., Bjella, K.L., Ranney, T.A. and Perron, N.M., 2005. Estimating energetic residue loading on military artillery ranges: Large decision units (No. ERDC/CRREL-TR-05-7). Report.pdf
    14. ^ Jenkins, T.F., Ampleman, G., Thiboutot, S., Bigl, S.R., Taylor, S., Walsh, M.R., Faucher, D., Mantel, R., Poulin, I., Dontsova, K.M. and Walsh, M.E., 2008. Characterization and fate of gun and rocket propellant residues on testing and training ranges (No. ERDC-TR-08-1). Report.pdf
    15. ^ Walsh, M.R., 2009. User’s manual for the CRREL Multi-Increment Sampling Tool. Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) SR-09-1, Hanover, NH, USA. Report.pdf
    16. ^ Cragin, J.H., Leggett, D.C., Foley, B.T., and Schumacher, P.W., 1985. TNT, RDX and HMX explosives in soils and sediments: Analysis techniques and drying losses. (CRREL Report 85-15) Hanover, NH, USA. Report.pdf
    17. ^ Walsh, M.E., Ramsey, C.A. and Jenkins, T.F., 2002. The effect of particle size reduction by grinding on subsampling variance for explosives residues in soil. Chemosphere, 49(10), pp.1267-1273. doi: 10.1016/S0045-6535(02)00528-3
    18. ^ Walsh, M.E., Ramsey, C.A., Collins, C.M., Hewitt, A.D., Walsh, M.R., Bjella, K.L., Lambert, D.J. and Perron, N.M., 2005. Collection methods and laboratory processing of samples from Donnelly Training Area Firing Points, Alaska, 2003 (No. ERDC/CRREL-TR-05-6). Report.pdf
    19. ^ Hewitt, A., Bigl, S., Walsh, M., Brochu, S., Bjella, K. and Lambert, D., 2007. Processing of training range soils for the analysis of energetic compounds (No. ERDC/CRREL-TR-07-15). Hanover, NH, USA. Report.pdf

    See Also