Difference between revisions of "User:Jhurley/sandbox"

From Enviro Wiki
Jump to: navigation, search
(Passive Samplers)
(Sediment Porewater Dialysis Passive Samplers for Inorganics (Peepers))
 
(692 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Passive Sampling of Sediments==
+
==Sediment Porewater Dialysis Passive Samplers for Inorganics (Peepers)==  
"Passive sampling" refers to a group of methods used to quantify the availability of organic contaminants to move between different media and/or to react in environmental systems such as indoor air, lake waters, or contaminated sediment beds. To do this, the passive sampling material is deployed in the environmental system and allowed to absorb chemicals of interest via diffusive transfers from the surroundings. Upon recovery of the passive sampler, the accumulated contaminants are measured, and the concentrations in the sampler are interpreted to infer the chemical concentrations in specific surrounding media like porewater in a sediment bed.  Such data are then useful inputs for site assessments such as those seeking to quantify fluxes from contaminated sediment beds to overlying waters or to evaluate the risk of significant uptake into benthic infauna and the larger food web.
+
Sediment porewater dialysis passive samplers, also known as “peepers,” are sampling devices that allow the measurement of dissolved inorganic ions in the porewater of a saturated sediment. Peepers function by allowing freely-dissolved ions in sediment porewater to diffuse across a micro-porous membrane towards water contained in an isolated compartment that has been inserted into sediment. Once retrieved after a deployment period, the resulting sample obtained can provide concentrations of freely-dissolved inorganic constituents in sediment, which provides measurements that can be used for understanding contaminant fate and risk. Peepers can also be used in the same manner in surface water, although this article is focused on the use of peepers in sediment.  
 +
 
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
 
'''Related Article(s):'''
 
'''Related Article(s):'''
* [[Contaminated Sediments - Introduction]]
 
* [[In Situ Treatment of Contaminated Sediments with Activated Carbon]]
 
* [[Passive Sampling of Munitions Constituents]]
 
  
'''Contributor(s):''' [[Dr. Philip M. Gschwend]]
+
*[[Contaminated Sediments - Introduction]]
 +
*[[Contaminated Sediment Risk Assessment]]
 +
*[[In Situ Treatment of Contaminated Sediments with Activated Carbon]]
 +
*[[Passive Sampling of Munitions Constituents]]
 +
*[[Sediment Capping]]
 +
*[[Mercury in Sediments]]
 +
*[[Passive Sampling of Sediments]]
 +
 
 +
 
 +
'''Contributor(s):'''  
 +
 
 +
*Florent Risacher, M.Sc.
 +
*Jason Conder, Ph.D.
  
 
'''Key Resource(s):'''
 
'''Key Resource(s):'''
* Validating the Use of Performance Reference Compounds in Passive Samplers to Assess Porewater Concentrations in Sediment Beds<ref name ="Apell2014">Apell, J.N. and Gschwend, P.M., 2014. Validating the Use of Performance Reference Compounds in Passive Samplers to Assess Porewater Concentrations in Sediment Beds.  Environmental Science and Technology, 48(17), pp. 10301-10307.  [https://doi.org/10.1021/es502694g DOI: 10.1021/es502694g]</ref>
 
  
* ''In situ'' passive sampling of sediments in the Lower Duwamish Waterway Superfund site: Replicability, comparison with ''ex situ'' measurements, and use of data<ref name="Apell2016">Apell, J.N., and Gschwend, P.M., 2016. ''In situ'' passive sampling of sediments in the Lower Duwamish Waterway Superfund site: Replicability, comparison with ''ex situ'' measurements, and use of data. Environmental Pollution, 218, pp. 95-101. [https://doi.org/10.1016/j.envpol.2016.08.023 DOI: 10.1016/j.envpol.2016.08.023]&nbsp;&nbsp; [[Media: ApellGschwend2016.pdf | Authors’ Manuscript]]</ref>
+
*A review of peeper passive sampling approaches to measure the availability of inorganics in sediment porewater<ref>Risacher, F.F., Schneider, H., Drygiannaki, I., Conder, J., Pautler, B.G., and Jackson, A.W., 2023. A Review of Peeper Passive Sampling Approaches to Measure the Availability of Inorganics in Sediment Porewater. Environmental Pollution, 328, Article 121581. [https://doi.org/10.1016/j.envpol.2023.121581 doi: 10.1016/j.envpol.2023.121581]&nbsp;&nbsp;[[Media: RisacherEtAl2023a.pdf | Open Access Manuscript]]</ref>
 +
 
 +
*Best Practices User’s Guide: Standardizing Sediment Porewater Passive Samplers for Inorganic Constituents of Concern<ref name="RisacherEtAl2023">Risacher, F.F., Nichols, E., Schneider, H., Lawrence, M., Conder, J., Sweett, A., Pautler, B.G., Jackson, W.A., Rosen, G., 2023b. Best Practices User’s Guide: Standardizing Sediment Porewater Passive Samplers for Inorganic Constituents of Concern, ESTCP ER20-5261. [https://serdp-estcp.mil/projects/details/db871313-fbc0-4432-b536-40c64af3627f Project Website]&nbsp;&nbsp;[[Media: ER20-5261BPUG.pdf | Report.pdf]]</ref>
  
* Laboratory, Field, and Analytical Procedures for Using Passive Sampling in the Evaluation of Contaminated Sediments: User’s Manual<ref name="Burgess2017">Burgess, R.M., Kane Driscoll, S.B., Burton, A., Gschwend, P.M., Ghosh, U., Reible, D., Ahn, S., and Thompson, T., 2017. Laboratory, Field, and Analytical Procedures for Using Passive Sampling in the Evaluation of Contaminated Sediments: User’s Manual, EPA/600/R-16/357. SERDP/ESTCP and U.S. EPA, Office of Research and Development, Washington, DC 20460.  [https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHEERL&dirEntryID=308731 Website]&nbsp;&nbsp; [[Media: EPA600R16357.pdf | Report.pdf]]</ref>
+
*[https://serdp-estcp.mil/projects/details/db871313-fbc0-4432-b536-40c64af3627f/er20-5261-project-overview Standardizing Sediment Porewater Passive Samplers for Inorganic Constituents of Concern, ESTCP Project ER20-5261]
  
 
==Introduction==
 
==Introduction==
Environmental media such as sediments typically contain many different materials or phases, including liquid solutions (e.g. water, [[Light Non-Aqueous Phase Liquids (LNAPLs)| nonaqueous phase liquids]]like spilled oils) and diverse solids (e.g., quartz, aluminosilicate clays, and combustion-derived soots). Further, the chemical concentration in the porewater medium includes both molecules that are "truly dissolved" in the water and others that are associated with colloids in the porewater<ref name="Brownawell1986">Brownawell, B.J., and Farrington, J.W., 1986. Biogeochemistry of PCBs in interstitial waters of a coastal marine sediment. Geochimica et Cosmochimica Acta, 50(1), pp. 157-169. [https://doi.org/10.1016/0016-7037(86)90061-X DOI: 10.1016/0016-7037(86)90061-X]&nbsp;&nbsp; Free download available from: [https://semspub.epa.gov/work/01/268631.pdf US EPA].</ref><ref name="Chin1992">Chin, Y.P., and Gschwend, P.M., 1992. Partitioning of Polycyclic Aromatic Hydrocarbons to Marine Porewater Organic Colloids. Environmental Science and Technology, 26(8), pp. 1621-1626. [https://doi.org/10.1021/es00032a020 DOI: 10.1021/es00032a020]</ref><ref name="Achman1996">Achman, D.R., Brownawell, B.J., and Zhang, L., 1996. Exchange of Polychlorinated Biphenyls Between Sediment and Water in the Hudson River Estuary. Estuaries, 19(4), pp. 950-965. [https://doi.org/10.2307/1352310 DOI: 10.2307/1352310]&nbsp;&nbsp; Free download available from: [https://www.academia.edu/download/55010335/135231020171114-2212-b93vic.pdf Academia.edu]</ref>. As a result, contaminant chemicals distribute among these diverse media (Figure 1) according to their affinity for each and the amount of each phase in the system<ref name="Gustafsson1996">Gustafsson, Ö., Haghseta, F., Chan, C., MacFarlane, J., and Gschwend, P.M., 1996. Quantification of the Dilute Sedimentary Soot Phase: Implications for PAH Speciation and Bioavailability. Environmental Science and Technology, 31(1), pp. 203-209. [https://doi.org/10.1021/es960317s  DOI: 10.1021/es960317s]</ref><ref name="Luthy1997">Luthy, R.G., Aiken, G.R., Brusseau, M.L., Cunningham, S.D., Gschwend, P.M., Pignatello, J.J., Reinhard, M., Traina, S.J., Weber, W.J., and Westall, J.C., 1997. Sequestration of Hydrophobic Organic Contaminants by Geosorbents. Environmental Science and Technology, 31(12), pp. 3341-3347. [https://doi.org/10.1021/es970512m DOI: 10.1021/es970512m]</ref><ref name="Lohmann2005">Lohmann, R., MacFarlane, J.K., and Gschwend, P.M., 2005. Importance of Black Carbon to Sorption of Native PAHs, PCBs, and PCDDs in Boston and New York Harbor Sediments. Environmental Science and Technology, 39(1), pp.141-148. [https://doi.org/10.1021/es049424+  DOI: 10.1021/es049424+]</ref><ref name="Cornelissen2005">Cornelissen, G., Gustafsson, Ö., Bucheli, T.D., Jonker, M.T., Koelmans, A.A., and van Noort, P.C., 2005. Extensive Sorption of Organic Compounds to Black Carbon, Coal, and Kerogen in Sediments and Soils: Mechanisms and Consequences for Distribution, Bioaccumulation, and Biodegradation. Environmental Science and Technology, 39(18), pp. 6881-6895. [https://doi.org/10.1021/es050191b  DOI: 10.1021/es050191b]</ref><ref name="Koelmans2009">Koelmans, A.A., Kaag, K., Sneekes, A., and Peeters, E.T.H.M., 2009. Triple Domain in Situ Sorption Modeling of Organochlorine Pesticides, Polychlorobiphenyls, Polyaromatic Hydrocarbons, Polychlorinated Dibenzo-p-Dioxins, and Polychlorinated Dibenzofurans in Aquatic Sediments. Environmental Science and Technology, 43(23), pp. 8847-8853. [https://doi.org/10.1021/es9021188 DOI: 10.1021/es9021188]</ref>. As such, the chemical concentration in any one medium (e.g., truly dissolved in porewater) in a multi-material system like sediment is very hard to know from measures of the total sediment concentration, which unfortunately is the information typically found by analyzing for chemicals in sediment samples.
+
Biologically available inorganic constituents associated with sediment toxicity can be quantified by measuring the freely-dissolved fraction of contaminants in the porewater<ref>Conder, J.M., Fuchsman, P.C., Grover, M.M., Magar, V.S., Henning, M.H., 2015. Critical review of mercury SQVs for the protection of benthic invertebrates. Environmental Toxicology and Chemistry, 34(1), pp. 6-21. [https://doi.org/10.1002/etc.2769 doi: 10.1002/etc.2769]&nbsp;&nbsp; [[Media: ConderEtAl2015.pdf | Open Access Article]]</ref><ref name="ClevelandEtAl2017">Cleveland, D., Brumbaugh, W.G., MacDonald, D.D., 2017. A comparison of four porewater sampling methods for metal mixtures and dissolved organic carbon and the implications for sediment toxicity evaluations. Environmental Toxicology and Chemistry, 36(11), pp. 2906-2915. [https://doi.org/10.1002/etc.3884 doi: 10.1002/etc.3884]</ref>. Classical sediment porewater analysis usually consists of collecting large volumes of bulk sediments which are then mechanically squeezed or centrifuged to produce a supernatant, or suction of porewater from intact sediment, followed by filtration and collection<ref name="GruzalskiEtAl2016">Gruzalski, J.G., Markwiese, J.T., Carriker, N.E., Rogers, W.J., Vitale, R.J.,  Thal, D.I., 2016. Pore Water Collection, Analysis and Evolution: The Need for Standardization. In: Reviews of Environmental Contamination and Toxicology, Vol. 237, pp. 37–51. Springer. [https://doi.org/10.1007/978-3-319-23573-8_2 doi: 10.1007/978-3-319-23573-8_2]</ref>. The extraction and measurement processes present challenges due to the heterogeneity of sediments, physical disturbance, high reactivity of some complexes, and interaction between the solid and dissolved phases, which can impact the measured concentration of dissolved inorganics<ref>Peijnenburg, W.J.G.M., Teasdale, P.R., Reible, D., Mondon, J., Bennett, W.W., Campbell, P.G.C., 2014. Passive Sampling Methods for Contaminated Sediments: State of the Science for Metals. Integrated Environmental Assessment and Management, 10(2), pp. 179–196. [https://doi.org/10.1002/ieam.1502 doi: 10.1002/ieam.1502]&nbsp;&nbsp; [[Media: PeijnenburgEtAl2014.pdf | Open Access Article]]</ref>. For example, sampling disturbance can affect redox conditions<ref name="TeasdaleEtAl1995">Teasdale, P.R., Batley, G.E., Apte, S.C., Webster, I.T., 1995. Pore water sampling with sediment peepers. Trends in Analytical Chemistry, 14(6), pp. 250–256. [https://doi.org/10.1016/0165-9936(95)91617-2 doi: 10.1016/0165-9936(95)91617-2]</ref><ref>Schroeder, H., Duester, L., Fabricius, A.L., Ecker, D., Breitung, V., Ternes, T.A., 2020. Sediment water (interface) mobility of metal(loid)s and nutrients under undisturbed conditions and during resuspension. Journal of Hazardous Materials, 394, Article 122543. [https://doi.org/10.1016/j.jhazmat.2020.122543 doi: 10.1016/j.jhazmat.2020.122543]&nbsp;&nbsp; [[Media: SchroederEtAl2020.pdf | Open Access Article]]</ref>, which can lead to under or over representation of inorganic chemical concentrations relative to the true dissolved phase concentration in the sediment porewater<ref>Wise, D.E., 2009. Sampling techniques for sediment pore water in evaluation of reactive capping efficacy. Master of Science Thesis. University of New Hampshire Scholars’ Repository. 178 pages. [https://scholars.unh.edu/thesis/502 Website]&nbsp;&nbsp; [[Media: Wise2009.pdf | Report.pdf]]</ref><ref name="GruzalskiEtAl2016"/>.  
 +
 
 +
To address the complications with mechanical porewater sampling, passive sampling approaches for inorganics have been developed to provide a method that has a low impact on the surrounding geochemistry of sediments and sediment porewater, thus enabling more precise measurements of inorganics<ref name="ClevelandEtAl2017"/>. Sediment porewater dialysis passive samplers, also known as “peepers,” were developed more than 45 years ago<ref name="Hesslein1976">Hesslein, R.H., 1976. An in situ sampler for close interval pore water studies. Limnology and Oceanography, 21(6), pp. 912-914. [https://doi.org/10.4319/lo.1976.21.6.0912 doi: 10.4319/lo.1976.21.6.0912]&nbsp;&nbsp; [[Media: Hesslein1976.pdf | Open Access Article]]</ref> and refinements to the method such as the use of reverse tracers have been made, improving the acceptance of the technology as decision making tool.
 +
 
 +
==Peeper Designs==
 +
[[File:RisacherFig1.png|thumb|300px|Figure 1. Conceptual illustration of peeper construction showing (top, left to right) the peeper cap (optional), peeper membrane and peeper chamber, and (bottom) an assembled peeper containing peeper water]]
 +
[[File:RisacherFig2.png | thumb |400px| Figure 2. Example of Hesslein<ref name="Hesslein1976"/> general peeper design (42 peeper chambers), from [https://www.usgs.gov/media/images/peeper-samplers USGS]]]
 +
[[File:RisacherFig3.png | thumb |400px| Figure 3. Peeper deployment structure to allow the measurement of metal availability in different sediment layers using five single-chamber peepers (Photo: Geosyntec Consultants)]]
 +
Peepers (Figure 1) are inert containers with a small volume (typically 1-100 mL) of purified water (“peeper water”) capped with a semi-permeable membrane. Peepers can be manufactured in a wide variety of formats (Figure 2, Figure 3) and deployed in in various ways.  
 +
 
 +
Two designs are commonly used for peepers. Frequently, the designs are close adaptations of the original multi-chamber Hesslein design<ref name="Hesslein1976"/> (Figure 2), which consists of an acrylic sampler body with multiple sample chambers machined into it. Peeper water inside the chambers is separated from the outside environment by a semi-permeable membrane, which is held in place by a top plate fixed to the sampler body using bolts or screws. An alternative design consists of single-chamber peepers constructed using a single sample vial with a membrane secured over the mouth of the vial, as shown in Figure 3, and applied in Teasdale ''et al.''<ref name="TeasdaleEtAl1995"/>, Serbst ''et al.''<ref>Serbst, J.R., Burgess, R.M., Kuhn, A., Edwards, P.A., Cantwell, M.G., Pelletier, M.C., Berry, W.J., 2003. Precision of dialysis (peeper) sampling of cadmium in marine sediment interstitial water. Archives of Environmental Contamination and Toxicology, 45(3), pp. 297–305. [https://doi.org/10.1007/s00244-003-0114-5 doi: 10.1007/s00244-003-0114-5]</ref>, Thomas and Arthur<ref name="ThomasArthur2010">Thomas, B., Arthur, M.A., 2010. Correcting porewater concentration measurements from peepers: Application of a reverse tracer. Limnology and Oceanography: Methods, 8(8), pp. 403–413. [https://doi.org/10.4319/lom.2010.8.403 doi: 10.4319/lom.2010.8.403]&nbsp;&nbsp; [[Media: ThomasArthur2010.pdf | Open Access Article]]</ref>, Passeport ''et al.''<ref>Passeport, E., Landis, R., Lacrampe-Couloume, G., Lutz, E.J., Erin Mack, E., West, K., Morgan, S., Lollar, B.S., 2016. Sediment Monitored Natural Recovery Evidenced by Compound Specific Isotope Analysis and High-Resolution Pore Water Sampling. Environmental Science and Technology, 50(22), pp. 12197–12204. [https://doi.org/10.1021/acs.est.6b02961 doi: 10.1021/acs.est.6b02961]</ref>, and Risacher ''et al.''<ref name="RisacherEtAl2023"/>. The vial is filled with deionized water, and the membrane is held in place using the vial cap or an o-ring. Individual vials are either directly inserted into sediment or are incorporated into a support structure to allow multiple single-chamber peepers to be deployed at once over a given depth profile (Figure 3).
 +
 
 +
==Peepers Preparation, Deployment and Retrieval==
 +
[[File:RisacherFig4.png | thumb |300px| Figure 4: Conceptual illustration of peeper passive sampling in a sediment matrix, showing peeper immediately after deployment (top) and after equilibration between the porewater and peeper chamber water (bottom)]]
 +
Peepers are often prepared in laboratories but are also commercially available in a variety of designs from several suppliers. Peepers are prepared by first cleaning all materials to remove even trace levels of metals before assembly. The water contained inside the peeper is sometimes deoxygenated, and in some cases the peeper is maintained in a deoxygenated atmosphere until deployment<ref>Carignan, R., St‐Pierre, S., Gachter, R., 1994. Use of diffusion samplers in oligotrophic lake sediments: Effects of free oxygen in sampler material. Limnology and Oceanography, 39(2), pp. 468-474. [https://doi.org/10.4319/lo.1994.39.2.0468 doi: 10.4319/lo.1994.39.2.0468]&nbsp;&nbsp; [[Media: CarignanEtAl1994.pdf | Open Access Article]]</ref>. However, recent studies<ref name="RisacherEtAl2023"/> have shown that deoxygenation prior to deployment does not significantly impact sampling results due to oxygen rapidly diffusing out of the peeper during deployment. Once assembled, peepers are usually shipped in a protective bag inside a hard-case cooler for protection.
 +
 
 +
Peepers are deployed by insertion into sediment for a period of a few days to a few weeks. Insertion into the sediment can be achieved by wading to the location when the water depth is shallow, by using push poles for deeper deployments<ref name="RisacherEtAl2023"/>, or by professional divers for the deepest sites. If divers are used, an appropriate boat or ship will be required to accommodate the diver and their equipment. Whichever method is used, peepers should be attached to an anchor or a small buoy to facilitate retrieval at the end of the deployment period.
 +
 
 +
During deployment, passive sampling is achieved via diffusion of inorganics through the peeper’s semi-permeable membrane, as the enclosed volume of peeper water equilibrates with the surrounding sediment porewater (Figure 4). It is assumed that the peeper insertion does not greatly alter geochemical conditions that affect freely-dissolved inorganics. Additionally, it is assumed that the peeper water equilibrates with freely-dissolved inorganics in sediment in such a way that the concentration of inorganics in the peeper water would be equal to that of the concentration of inorganics in the sediment porewater.
 +
 
 +
After retrieval, the peepers are brought to the surface and usually preserved until they can be processed. This can be achieved by storing the peepers inside a sealable, airtight bag with either inert gas or oxygen absorbing packets<ref name="RisacherEtAl2023"/>. The peeper water can then be processed by quickly pipetting it into an appropriate sample bottle which usually contains a preservative (e.g., nitric acid for metals). This step is generally conducted in the field. Samples are stored on ice to maintain a temperature of less than 4°C and shipped to an analytical laboratory. The samples are then analyzed for inorganics by standard methods (i.e., USEPA SW-846). The results obtained from the analytical laboratory are then used directly or assessed using the equations below if a reverse tracer is used because deployment time is insufficient for all analytes to reach equilibrium.
 +
 
 +
==Equilibrium Determination (Tracers)==
 +
The equilibration period of peepers can last several weeks and depends on deployment conditions, analyte of interest, and peeper design. In many cases, it is advantageous to use pre-equilibrium methods that can use measurements in peepers deployed for shorter periods to predict concentrations at equilibrium<ref name="USEPA2017">USEPA, 2017. Laboratory, Field, and Analytical Procedures for Using Passive Sampling in the Evaluation of Contaminated Sediments: User’s Manual. EPA/600/R-16/357.&nbsp;&nbsp; [[Media: EPA_600_R-16_357.pdf | Report.pdf]]</ref>.
 +
 
 +
Although the equilibrium concentration of an analyte in sediment can be evaluated by examining analyte results for peepers deployed for several different amounts of time (i.e., a time series), this is impractical for typical field investigations because it would require several mobilizations to the site to retrieve samplers. Alternately, reverse tracers (referred to as a performance reference compound when used with organic compound passive sampling) can be used to evaluate the percentage of equilibrium reached by a passive sampler.
  
If an animal moves into this system, it will also accumulate the chemical in its tissues from the loads in all the other materials (Figure 1).  This is important if one is concerned with exposures of the chemical to other organisms, including humans, who may eat such shellfish. Predicting the quantity of contaminant in the clam requires knowledge of the relative affinities of the chemical for the clam versus the sediment materials. For example, if one knew the chemical's truly dissolved concentration in the porewater and could reasonably assume the chemical of interest in the clams has mostly accumulated in its lipids (as is often the case for very hydrophobic compounds), then one could estimate the chemical concentration in the clam (''C<sub><small>clam</small></sub>'', typically in units of &mu;g/kg clam wet weight) using a lipid-water [[Wikipedia: Partition coefficient | partition coefficient]], ''K<sub><small>lipid-water</small></sub>'', typically in units of (&mu;g/kg lipid)'''/'''(&mu;g/L water), and the porewater concentration of the chemical (''C<sub><small>porewater</small></sub>'', in &mu;g/L) with Equation 1.
+
Thomas and Arthur<ref name="ThomasArthur2010"/> studied the use of a reverse tracer to estimate percent equilibrium in lab experiments and a field application. They concluded that bromide can be used to estimate concentrations in porewater using measurements obtained before equilibrium is reached. Further studies were also conducted by Risacher ''et al.''<ref name="RisacherEtAl2023"/> showed that lithium can also be used as a tracer for brackish and saline environments. Both studies included a mathematical model for estimating concentrations of ions in external media (''C<small><sub>0</sub></small>'') based on measured concentrations in the peeper chamber (''C<small><sub>p,t</sub></small>''), the elimination rate of the target analyte (''K'') and the deployment time (''t''):
{|
+
</br>
|
+
{|
 +
| || '''Equation&nbsp;1:'''
 +
|&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[[File: Equation1r.png]]
 +
|-
 +
| Where: || ||
 
|-
 
|-
| || Equation 1.
+
| || ''C<small><sub>0</sub></small>''|| is the freely dissolved concentration of the analyte in the sediment (mg/L or &mu;g/L), sometimes referred to as ''C<small><sub>free</sub></small>  
| style="text-align:center;"| <big>'''''C<sub><small>clam</small></sub> '''=''' f<sub><small>lipid</small></sub> '''x''' K<sub><small>lipid-water</small></sub> '''x''' C<sub><small>porewater</small></sub>'''''</big>
 
 
|-
 
|-
| where:
+
| || ''C<small><sub>p,t</sub></small>'' || is the measured concentration of the analyte in the peeper at time of retrieval (mg/L or &mu;g/L)
 
|-
 
|-
| || ''f<sub><small>lipid</small></sub>'' || is the fraction lipids contribute to the total wet weight of a clam (kg lipid/kg clam wet weight), and
+
| || ''K'' || is the elimination rate of the target analyte
 
|-
 
|-
| || ''C<sub><small>porewater</small></sub>'' || is the freely dissolved contaminant concentration in the porewater surrounding the clam.
+
| || ''t'' || is the deployment time (days)
|}  
+
|}
  
While there is a great deal of information on the values of ''K<sub><small>lipid-water</small></sub>'' for many chemicals<ref name="Schwarzenbach2017">Schwarzenbach, R.P., Gschwend, P.M., and Imboden, D.M., 2017.  Environmental Organic Chemistry, 3rd edition. Ch. 16: Equilibrium Partitioning from Water and Air to Biota, pp. 469-521. John Wiley and Sons.  ISBN: 978-1-118-76723-8</ref>, it is often very inaccurate to estimate truly dissolved porewater concentrations from total sediment concentrations using assumptions about the affinity of those chemicals for the solids in the system<ref name="Gustafsson1996"/>. Further, it is difficult to isolate porewater without colloids and/or measure the very low truly dissolved concentrations of hydrophobic contaminants of concern like [[Polycyclic Aromatic Hydrocarbons (PAHs) | polycyclic aromatic hydrocarbons (PAHs)]], [[Wikipedia: Polychlorinated biphenyl | polychlorinated biphenyls (PCBs)]], nonionic pesticides like [[Wikipedia: DDT | dichlorodiphenyltrichloroethane (DDT)]], and [[Wikipedia: Polychlorinated dibenzodioxins | polychlorinated dibenzo-p-dioxins (PCDDs)]]/[[Wikipedia: Polychlorinated dibenzofurans | dibenzofurans (PCDFs)]]<ref name="Hawthorne2005">Hawthorne, S.B., Grabanski, C.B., Miller, D.J., and Kreitinger, J.P., 2005. Solid-Phase Microextraction Measurement of Parent and Alkyl Polycyclic Aromatic Hydrocarbons in Milliliter Sediment Pore Water Samples and Determination of K<sub><small>DOC</small></sub> Values. Environmental Science and Technology, 39(8), pp. 2795-2803.  [https://doi.org/10.1021/es0405171 DOI: 10.1021/es0405171]</ref>.
+
The elimination rate of the target analyte (''K'') is calculated using Equation 2:
 +
</br>
 +
{|
 +
| || '''Equation&nbsp;2:'''
 +
|&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[[File: Equation2r.png]]
 +
|-
 +
| Where: || ||
 +
|-
 +
| || ''K''|| is the elimination rate of the target analyte
 +
|-
 +
| || ''K<small><sub>tracer</sub></small>'' || is the elimination rate of the tracer
 +
|-
 +
| || ''D'' || is the free water diffusivity of the analyte (cm<sup>2</sup>/s)
 +
|-
 +
| || ''D<small><sub>tracer</sub></small>'' || is the free water diffusivity of the tracer (cm<sup>2</sup>/s)
 +
|}
  
==Passive Samplers==
+
The elimination rate of the tracer (''K<small><sub>tracer</sub></small>'') is calculated using Equation 3:
One approach to address this problem for contaminated sediments is to insert organic polymers like low density polyethylene (LDPE), polydimethylsiloxane (PDMS), or polyoxymethylene (POM) that can absorb such chemicals in the sediment<ref name="Mayer2000">Mayer, P., Vaes, W.H., Wijnker, F., Legierse, K.C., Kraaij, R., Tolls, J., and Hermens, J.L., 2000. Sensing Dissolved Sediment Porewater Concentrations of Persistent and Bioaccumulative Pollutants Using Disposable Solid-Phase Microextraction Fibers. Environmental Science and Technology, 34(24), pp. 5177-5183.  [https://doi.org/10.1021/es001179g DOI: 10.1021/es001179g]</ref><ref name="Booij2003">Booij, K., Hoedemaker, J.R., and Bakker, J.F., 2003. Dissolved PCBs, PAHs, and HCB in Pore Waters and Overlying Waters of Contaminated Harbor Sediments. Environmental Science and Technology, 37(18), pp. 4213-4220.  [https://doi.org/10.1021/es034147c DOI: 10.1021/es034147c]</ref><ref name="Cornelissen2008">Cornelissen, G., Pettersen, A., Broman, D., Mayer, P., and Breedveld, G.D., 2008. Field testing of equilibrium passive samplers to determine freely dissolved native polycyclic aromatic hydrocarbon concentrations. Environmental Toxicology and Chemistry, 27(3), pp. 499-508.  [https://doi.org/10.1897/07-253.1 DOI: 10.1897/07-253.1]</ref><ref name="Tomaszewski2008">Tomaszewski, J.E., and Luthy, R.G., 2008. Field Deployment of Polyethylene Devices to Measure PCB Concentrations in Pore Water of Contaminated Sediment. Environmental Science and Technology, 42(16), pp. 6086-6091.  [https://doi.org/10.1021/es800582a DOI: 10.1021/es800582a]</ref><ref name="Fernandez2009">Fernandez, L.A., MacFarlane, J.K., Tcaciuc, A.P., and Gschwend, P.M., 2009. Measurement of Freely Dissolved PAH Concentrations in Sediment Beds Using Passive Sampling with Low-Density Polyethylene Strips. Environmental Science and Technology, 43(5), pp. 1430-1436.  [https://doi.org/10.1021/es802288w DOI: 10.1021/es802288w]</ref><ref name="Arp2015">Arp, H.P.H., Hale, S.E., Elmquist Kruså, M., Cornelissen, G., Grabanski, C.B., Miller, D.J., and Hawthorne, S.B., 2015. Review of polyoxymethylene passive sampling methods for quantifying freely dissolved porewater concentrations of hydrophobic organic contaminants. Environmental Toxicology and Chemistry, 34(4), pp. 710-720.  [https://doi.org/10.1002/etc.2864 DOI: 10.1002/etc.2864]&nbsp;&nbsp; [https://setac.onlinelibrary.wiley.com/doi/epdf/10.1002/etc.2864 Free access article.]&nbsp;&nbsp; [[Media: Arp2015.pdf | Report.pdf]]</ref><ref name="Apell2016"/>. In this approach, the polymer is inserted in the sediment bed where it absorbs some of the contaminant load via the contaminant's diffusion into the polymer from the surroundings. When the polymer achieves sorptive equilibration with the sediments, the chemical concentration in the polymer, ''C<sub><small>polymer</small></sub>'' (&mu;g/kg polymer), can be used to find the corresponding concentration in the porewater,  ''C<sub><small>porewater</small></sub>'' (&mu;g/L), using a polymer-water partition coefficient, ''K<sub><small>polymer-water</small></sub>'' ((&mu;g/kg polymer)'''/'''(&mu;g/L water)), that has previously been found in laboratory testing<ref name="Lohmann2012">Lohmann, R., 2012. Critical Review of Low-Density Polyethylene’s Partitioning and Diffusion Coefficients for Trace Organic Contaminants and Implications for Its Use as a Passive Sampler. Environmental Science and Technology, 46(2), pp. 606-618.  [https://doi.org/10.1021/es202702y DOI: 10.1021/es202702y]</ref><ref name="Ghosh2014">Ghosh, U., Kane Driscoll, S., Burgess, R.M., Jonker, M.T., Reible, D., Gobas, F., Choi, Y., Apitz, S.E., Maruya, K.A., Gala, W.R., Mortimer, M., and Beegan, C., 2014. Passive Sampling Methods for Contaminated Sediments: Practical Guidance for Selection, Calibration, and Implementation. Integrated Environmental Assessment and Management, 10(2), pp. 210-223.  [https://doi.org/10.1002/ieam.1507 DOI: 10.1002/ieam.1507]&nbsp;&nbsp; [https://setac.onlinelibrary.wiley.com/doi/epdf/10.1002/ieam.1507 Free access article.]&nbsp;&nbsp; [[Media: Ghosh2014.pdf | Report.pdf]]</ref>, as shown in Equation 2.
+
</br>
{|
+
{|
|
+
| || '''Equation&nbsp;3:'''
 +
|&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[[File: Equation3r2.png]]
 +
|-
 +
| Where: || ||
 +
|-
 +
| || ''K<small><sub>tracer</sub></small>'' || is the elimination rate of the tracer
 +
|-
 +
| || ''C<small><sub>tracer,i</sub></small>''|| is the measured initial concentration of the tracer in the peeper prior to deployment (mg/L or &mu;g/L)
 
|-
 
|-
|&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;|| Equation&nbsp;2.
+
| || ''C<small><sub>tracer,t</sub></small>'' || is the measured final concentration of the tracer in the peeper at time of retrieval (mg/L or &mu;g/L)
| style="width:600px; text-align:center;" | <big>'''''C<sub><small>porewater</small></sub> '''=''' C<sub><small>polymer</small></sub> '''/''' K<sub><small>polymer-water</small></sub>'''''</big>
 
|}
 
 
 
Such “passive uptake” by the polymer also reflects the availability of the chemicals for transport to adjacent systems (e.g., overlying surface waters) and for uptake into organisms (e.g., [[Wikipedia: Bioaccumulation | bioaccumulation]]).  Thus, one can use the porewater concentrations to estimate the biotic accumulation of the chemicals, too.  For example, for the concentration in the clam equilibrated with the sediment, ''C<sub><small>clam</small></sub>'' (&mu;g/kg clam), would be found by combining Equations 1 and 2 to get Equation 3.
 
{|
 
|
 
 
|-
 
|-
|&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;|| Equation&nbsp;3.
+
| || ''t'' || is the deployment time (days)
|style="width:700px; text-align:center;" |<big>'''''C<sub><small>clam</small></sub> '''=''' f<sub><small>lipid</small></sub> '''x''' K<sub><small>lipid-water</small></sub> '''x''' C<sub><small>polymer</small></sub> '''/''' K<sub><small>polymer-water</small></sub>'''''</big>
 
 
|}
 
|}
  
==Performance Reference Compounds (PRCs)==
+
Using this set of equations allows the calculation of the porewater concentration of the analyte prior to its equilibrium with the peeper water. A template for these calculations can be found in the appendix of Risacher ''et al.''<ref name="RisacherEtAl2023"/>.
Perhaps unsurprisingly, pollutants with low water solubility like PAHs, PCBs, etc. do not diffuse quickly through sediment beds.  As a result, their accumulation in polymeric materials in sediments can take a long time to achieve equilibration
 
 
 
 
 
 
 
[[File: Schwartz1w2Fig1.PNG | thumb | 500px | Figure 1.  Conceptual model of mercury speciation in the environment<ref>European Commission's Joint Research Centre, 2017. A new CRM to make mercury measurements in food more reliable. [https://ec.europa.eu/jrc/en/science-update/new-crm-make-mercury-measurements-food-more-reliable Website]</ref>]]
 
[[Wikipedia: Mercury (element) | Mercury]] (Hg) is released into the environment typically in the inorganic form. Natural emissions of Hg(0) come mainly from volcanoes and the ocean. Anthropogenic emissions are mainly from artisanal and small-scale gold mining, coal combustion, and various industrial processes that use Hg ( see the [https://www.unep.org/explore-topics/chemicals-waste/what-we-do/mercury/global-mercury-assessment UN Global mercury assessment]). Industrial and natural emissions of gaseous elemental mercury, Hg(0), can travel long distances in the atmosphere before being oxidized and deposited on land and in water as inorganic Hg(II). The long range transport and atmospheric deposition of Hg results in widespread low-level Hg contamination of soils at concentrations of 0.01 to 0.3 mg/kg<ref name="Eckley2020"/>.
 
 
 
Hg-contaminated sites are most commonly contaminated with Hg(II) from industrial discharge and have soil concentrations in the range of 100s to 1000s of mg/kg<ref name="Eckley2020"/>. Direct exposure to Hg(II) and Hg(0) can be a human health risk at heavily contaminated sites. However, the organic form of Hg, [[Wikipedia: Methylmercury | methylmercury]] (MeHg or CH<sub>3</sub>Hg<sup>+</sup>) is typically the greater concern. MeHg is a neurotoxin that is particularly harmful to developing fetuses and young children. Direct contamination of the environment with MeHg is not common, but has occurred, most notably in [https://www.minamatadiseasemuseum.net/10-things-to-know Minamata Bay, Japan] (see also [https://en.wikipedia.org/wiki/Minamata_disease Minamata disease]). More commonly, MeHg is formed in the environment from Hg(II) in oxygen-limited conditions in a processes mediated by anaerobic microorganisms. Because MeHg [[Wikipedia: Biomagnification | biomagnifies]] in the aquatic food web, MeHg concentrations in fish can be elevated in areas that have relatively low levels of Hg contamination. The MeHg production depends heavily on site geochemistry, and high total Hg sediment concentrations do not always correlate with MeHg production potential.
 
 
 
==Biogeochemistry/Mobility of Hg in soils==
 
In the environment, Hg mobility is largely controlled by chelation with various ligands or adsorption to particles<ref name ="Hsu-Kim2018"/>. Hg(II) is most strongly attracted to the sulfur functional groups in dissolved organic matter (DOM) and to sulfur ligands. Over time, newly released Hg(II) “ages” and becomes less reactive to ligands and is less likely to be found in the dissolved phase. Legacy Hg(II) found in sediments and soils is more likely to be strongly adsorbed to the soil matrix and not very bioavailable compared to newly released Hg(II)<ref name ="Hsu-Kim2018"/>. MeHg has mobility tendencies similar to Hg, with DOM and sulfur ligands competing with each other to form complexes with MeHg<ref name="Loux2007">Loux, N.T., 2007. An assessment of thermodynamic reaction constants for simulating aqueous environmental monomethylmercury speciation. Chemical Speciation and Bioavailability, 19(4), pp.183-196.  [https://doi.org/10.3184/095422907X255947  DOI: 10.3184/095422907X255947]&nbsp;&nbsp; [https://www.tandfonline.com/doi/pdf/10.3184/095422907X255947?needAccess=true Free access article]&nbsp;&nbsp; [[Media: Loux2007.pdf | Report.pdf]]</ref>. However, unlike Hg-S complexes, MeHg-S does not have limited solubility.
 
 
 
The bioavailability of Hg(II) is one of the factors controlling MeHg production in the environment. MeHg production occurs in anoxic environments and is affected by: (1) the bioavailability of Hg(II) complexes to Hg-[[Wikipedia: Methylation | methylating]] microorganisms, (2) the activity of Hg-methylating microorganisms, and (3) the rate of biotic and abiotic [[Wikipedia: Demethylation | demethylation]]. MeHg is produced by anaerobic microorganisms that contain the ''hgcAB'' gene<ref name="Parks2013">Parks, J.M., Johs, A., Podar, M., Bridou, R. Hurt, R.A., Smith, S.D., Tomanicek, S.J., Qian, Y., Brown, S.D., Brandt, C.C., Palumbo, A.V., Smith, J.C., Wall, J.D., Elias, D.A., Liang, L., 2013. The Genetic Basis for Bacterial Mercury Methylation. Science, 339(6125), pp. 1332-1335.  [https://science.sciencemag.org/content/339/6125/1332 DOI: 10.1126/science.1230667]</ref>. These microorganisms are a diverse group and include, sulfate-reducing bacteria, iron-reducing bacteria, and methanogenic bacteria. Site geochemistry has a significant effect on MeHg production. Methylating microorganisms are sensitive to oxygen, and MeHg production occurs in oxygen-depleted or anaerobic zones in the environment, such as anoxic aquatic sediments, saturated soils, and biofilms with anoxic microenvironments<ref name="Bravo2020">Bravo, A.G., Cosio, C., 2020. Biotic formation of methylmercury: A bio–physico–chemical conundrum. Limnology and Oceanography, 65(5), pp. 1010-1027. [https://doi.org/10.1002/lno.11366 DOI: 10.1002/lno.11366]&nbsp;&nbsp; [https://aslopubs.onlinelibrary.wiley.com/doi/epdf/10.1002/lno.11366 Free Access Article]&nbsp;&nbsp; [[Media: Bravo2020.pdf | Report.pdf]]</ref>. The activity of methylating microorganisms can be impacted by redox conditions, the concentrations of organic carbon, and different electron acceptors (e.g. sulfate vs iron)<ref name="Bravo2020"/>. Overall, MeHg concentrations and production are impacted by demethylation as well. Demethylation can occur both abiotically and biotically and occurs at a much faster rate than methylation. The main routes of abiotic demethylation are photochemical reactions and demethylation catalyzed by reduced sulfur surfaces<ref name="Du2019">Du, H. Ma, M., Igarashi, Y., Wang, D., 2019. Biotic and Abiotic Degradation of Methylmercury in Aquatic Ecosystems: A Review. Bulletin of Environmental Contamination and Toxicology, 102 pp. 605-611. [https://doi.org/10.1007/s00128-018-2530-2 DOI: 10.1007/s00128-018-2530-2]</ref><ref name="Jonsson2016">Jonsson, S., Mazrui, N.M., Mason, R.P., 2016. Dimethylmercury Formation Mediated by Inorganic and Organic Reduced Sulfur Surfaces. Scientific Reports, 6, Article 27958.  [https://doi.org/10.1038/srep27958 DOI: 10.1038/srep27958]&nbsp;&nbsp; [https://www.nature.com/articles/srep27958.pdf Free access article]&nbsp;&nbsp; [[Media: Jonsson2016.pdf | Report.pdf]]</ref>. Methylmercury can be degraded biotically by aerobic bacteria containing the mercury detoxification, ''mer'' [[Wikipedia: Operon | operon]] and through oxidative demethylation by anaerobic microorganisms<ref name="Du2019"/>.
 
  
==Bioaccumulation and Toxicology==
+
==Using Peeper Data at a Sediment Site==
Regulatory criteria are most often based on total Hg concentrations, however, MeHg is the form of Hg that can [[Wikipedia: Bioaccumulation | bioaccumulate]] in wildlife and is the greatest human and ecological health risk<ref name=”ATSDR1999”>Agency for Toxic Substances and Disease Registry (ATSDR), 1999. Toxicological Profile for Mercury.  [https://www.atsdr.cdc.gov/ToxProfiles/tp46.pdf Free download]&nbsp;&nbsp; [[Media: ATSDR1999.pdf | Report.pdf]]</ref>. MeHg represents over 95% of the Hg found in fish<ref name="Bloom1992">Bloom, N.S., 1992. On the Chemical Form of Mercury in Edible Fish and Marine Invertebrate Tissue. Canadian Journal of Fisheries and Aquatic Sciences 49(5), pp. 1010-117.  [https://doi.org/10.1139/f92-113 DOI: 10.1139/f92-113]</ref>. Hg and MeHg can be taken up directly from contaminated water into organisms, with the identity of the Hg-ligand complexes determining how readily the Hg is taken up into the organism<ref name="Kidd2012">Kidd, K., Clayden, M., Jardine, T., 2012. Bioaccumulation and Biomagnification of Mercury through Food Webs. Environmental Chemistry and Toxicology of Mercury, pp. 453-499. Liu, G., Yong, C. O’Driscoll, N., Eds. John Wiley and Sons, Inc. Hoboken, NJ.  [https://doi.org/10.1002/9781118146644.ch14 DOI: 10.1002/9781118146644.ch14]</ref>. Direct bioconcentration from water is the major uptake route at the base of the food web. Hg and MeHg can also enter the food web when benthic organisms ingest contaminated sediments<ref name="Mason2001">Mason, R.P., 2001. The Bioaccumulation of Mercury, Methylmercury and Other Toxic Elements into Pelagic and Benthic Organisms. Coastal and Estuarine Risk Assessment, pp. 127-149. Newman, M., Roberts, M., and Hale, R.C., Ed.s. CRC Press. ISBN: 978-1-4200-3245-1  Free download from: [https://www.researchgate.net/profile/Robert-Mason-13/publication/266354387_The_Bioaccumulation_of_Mercury_Methylmercury_and_Other_Toxic_Elements_into_Pelagic_and_Benthic_Organisms/links/55083eff0cf26ff55f80662d/The-Bioaccumulation-of-Mercury-Methylmercury-and-Other-Toxic-Elements-into-Pelagic-and-Benthic-Organisms.pdf ResearchGate]</ref>. Further up the food web organisms are exposed to Hg and MeHg both through exposure to contaminated water and through their diet. The higher up the trophic level, the more important dietary exposure becomes. Fish obtain more than 90% of Hg from their diet<ref name="Kidd2012"/>.  
+
Peeper data can be used to enable site specific decision making in a variety of ways. Some of the most common uses for peepers and peeper data are discussed below.
  
Humans are mainly exposed to Hg in the forms of MeHg and Hg(0). Hg(0) exposure comes from dental amalgams and industrial/contaminated site exposures. Hg(0) readily crosses the blood/brain barrier and mainly effects the nervous system and the kidneys<ref name="Clarkson2003">Clarkson, T.W., Magos, L., Myers, G.J., 2003. The Toxicology of Mercury — Current Exposures and Clinical Manifestations. New England Journal of Medicine, 349, pp. 1731-1737. [https://doi.org/10.1056/NEJMra022471 DOI: 10.1056/NEJMra022471]</ref>. MeHg exposure comes from the consumption of contaminated fish. In the human body, MeHg is readily absorbed through the gastrointestinal tract into the bloodstream and crosses the blood/brain barrier, affecting the central nervous system. MeHg can also pass through the placenta to the fetus and is particularly harmful to the developing nervous system of the fetus.  
+
'''Nature and Extent:''' Multiple peepers deployed in sediment can help delineate areas of increased metal availability. Peepers are especially helpful for sites that are comprised of coarse, relatively inert materials that may not be conducive to traditional bulk sediment sampling. Because much of the inorganics present in these types of sediments may be associated with the porewater phase rather than the solid phase, peepers can provide a more representative measurement of C<small><sub>0</sub></small>. Additionally, at sites where tidal pumping or groundwater flux may be influencing the nature and extent of inorganics, peepers can provide a distinct advantage to bulk sediment sampling or other point-in-time measurements, as peepers can provide an average measurement that integrates the variability in the hydrodynamic and chemical conditions over time.
  
MeHg and Hg toxicity in the body occurs through multiple pathways and may be linked to the affinity of Hg for sulfur groups. Hg and MeHg bind to S-containing groups, which can block normal bodily functions<ref name="Bjørklund2017">Bjørklund, G., Dadar, M., Mutter, J. and Aaseth, J., 2017. The toxicology of mercury: Current research and emerging trends. Environmental Research, 159, pp.545-554.  [https://doi.org/10.1016/j.envres.2017.08.051 DOI: 10.1016/j.envres.2017.08.051]</ref>.  
+
'''Sources and Fate:''' A considerable advantage to using peepers is that C<small><sub>0</sub></small> results are expressed as concentration in units of mass per volume (e.g., mg/L), providing a common unit of measurement to compare across multiple media. For example, synchronous measurements of C<small><sub>0</sub></small> using peepers deployed in both surface water and sediment can elucidate the potential flux of inorganics from sediment to surface water. Paired measurements of both C<small><sub>0</sub></small> and bulk metals in sediment can also allow site specific sediment-porewater partition coefficients to be calculated. These values can be useful in understanding and predicting contaminant fate, especially in situations where the potential dissolution of metals from sediment are critical to predict, such as when sediment is dredged.
  
==Regulatory Framework for Mercury==
+
'''Direct Toxicity to Aquatic Life:''' Peepers are frequently used to understand the potential direct toxicity to aquatic life, such as benthic invertebrates and fish. A C<small><sub>0</sub></small> measurement obtained from a peeper deployed in sediment (''in situ'') or surface water (''ex situ''), can be compared to toxicological benchmarks for aquatic life to understand the potential toxicity to aquatic life and to set remediation goals<ref name="USEPA2017"/>. C<small><sub>0</sub></small> measurements can also be incorporated in more sophisticated approaches, such as the Biotic Ligand Model<ref>Santore, C.R., Toll, E.J., DeForest, K.D., Croteau, K., Baldwin, A., Bergquist, B., McPeek, K., Tobiason, K., and Judd, L.N., 2022. Refining our understanding of metal bioavailability in sediments using information from porewater: Application of a multi-metal BLM as an extension of the Equilibrium Partitioning Sediment Benchmarks. Integrated Environmental Assessment and Management, 18(5), pp. 1335–1347. [https://doi.org/10.1002/ieam.4572 doi: 10.1002/ieam.4572]</ref> to understand the potential for toxicity or the need to conduct toxicological testing or ecological evaluations.
In the United States, mercury is regulated by several different [[Wikipedia: Mercury regulation in the United States | environmental laws]] including: the Mercury Export Ban Act of 2008, the Mercury-Containing and Rechargeable Battery Management Act of 1996, the Clean Air Act, the Clean Water Act, the Emergency Planning and Community Right-to-Know Act,  the Resource Conservation and Recovery Act, and the Safe Drinking Water Act<ref name=”USEPA2021”>US EPA, 2021. Environmental Laws that Apply to Mercury. [https://www.epa.gov/mercury/environmental-laws-apply-mercury US EPA Website]</ref>.  
 
  
In 2013, the United States signed the international [https://www.epa.gov/international-cooperation/minamata-convention-mercury Minamata Convention on Mercury]. The Minamata Convention on Mercury seeks to address and reduce human activities that are contributing to widespread mercury pollution. Worldwide, 128 countries have signed the Convention.
+
'''Bioaccumulation of Inorganics by Aquatic Life:''' Peepers can also be used to understand site specific relationship between C<small><sub>0</sub></small> and concentrations of inorganics in aquatic life. For example, measuring C<small><sub>0</sub></small> in sediment from which organisms are collected and analyzed can enable the estimation of a site-specific uptake factor. This C<small><sub>0</sub></small>-to-organism uptake factor (or model) can then be applied for a variety of uses, including predicting the concentration of inorganics in other organisms, or estimating a sediment C<small><sub>0</sub></small> value that would be safe for consumption by wildlife or humans. Because several decades of research have found that the correlation between C<small><sub>0</sub></small> measurements and bioavailability is usually better than the correlation between measurements of chemicals in bulk sediment and bioavailability, C<small><sub>0</sub></small>-to-organism uptake factors are likely to be more accurate than uptake factors based on bulk sediment testing.
  
==Remediation Technologies==
+
'''Evaluating Sediment Remediation Efficacy:''' Passive sampling has been used widely to evaluate the efficacy of remedial actions such as active amendments, thin layer placements, and capping to reduce the availability of contaminants at sediment sites. A particularly powerful approach is to compare baseline (pre-remedy) C<small><sub>0</sub></small> in sediment to C<small><sub>0</sub></small> in sediment after the sediment remedy has been applied. Peepers can be used in this context for inorganics, allowing the sediment remedy’s success to be evaluated and monitored in laboratory benchtop remedy evaluations, pilot scale remedy evaluations, and full-scale remediation monitoring.
As a chemical element, Hg cannot be destroyed, so the goal of Hg-remediation is immobilization and prevention of food web bioaccumulation. At very highly contaminated sites (>100s ppm), sediments are often removed and landfilled<ref name="Eckley2020"/>. ''In situ'' capping is also a common remediation approach. Both dredging and capping can be costly and ecologically destructive, and the development of less invasive, less costly remediation technologies for Hg and MeHg contaminated sediments is an active research field. Eckley et al.<ref name="Eckley2020"/>and Wang et al.<ref name="Wang2020">Wang, L., Hou, D., Cao, Y., Ok, Y.S., Tack, F., Rinklebe, J., O’Connor, D., 2020. Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. Environmental International, 134, 105281.  [https://doi.org/10.1016/j.envint.2019.105281  DOI: 10.1016/j.envint.2019.105281]&nbsp;&nbsp; [https://www.sciencedirect.com/science/article/pii/S0160412019324754 Free access article]</ref> give thorough reviews of standard and emerging technologies.  
 
  
Recently application of ''in situ'' sorbents has garnered interest as a remediation solution for Hg<ref name="Eckley2020"/>. Many different materials, including biochar and various formulations of [[In Situ Treatment of Contaminated Sediments with Activated Carbon | activated carbon]], are successful in lowering porewater concentrations of Hg and MeHg in contaminated sediments<ref name="Gilmour2013">Gilmour, C.C., Riedel, G.S., Riedel, G., Kwon, S., Landis, R., Brown, S.S., Menzie, C.A., Ghosh, U., 2013. Activated Carbon Mitigates Mercury and Methylmercury Bioavailability in Contaminated Sediments. Environmental Science and Technology, 47(22), pp. 13001-13010.  [https://doi.org/10.1021/es4021074 DOI: 10.1021/es4021074]&nbsp;&nbsp; Free download from: [https://www.researchgate.net/profile/Steven-Brown-18/publication/258042399_Activated_Carbon_Mitigates_Mercury_and_Methylmercury_Bioavailability_in_Contaminated_Sediments/links/5702a10e08aea09bb1a30083/Activated-Carbon-Mitigates-Mercury-and-Methylmercury-Bioavailability-in-Contaminated-Sediments.pdf ResearchGate]</ref>. More research is needed to determine whether Hg and MeHg sorbed to these materials are available for uptake into organisms. Site biogeochemistry can also impact the efficacy of sorbent materials, with dissolved organic matter and sulfide concentrations impacting Hg and MeHg sorption. Overall, knowing site biogeochemical characteristics is important for predicting Hg mobility and MeHg production risks as well as for designing a remediation strategy that will be effective.
 
<br clear="left" />
 
 
==References==
 
==References==
 
<references />
 
<references />
 +
 
==See Also==
 
==See Also==
 +
*[https://vimeo.com/809180171/c276c1873a Peeper Deployment Video]
 +
*[https://vimeo.com/811073634/303edf2693 Peeper Retrieval Video]
 +
*[https://vimeo.com/811328715/aea3073540 Peeper Processing Video]
 +
*[https://sepub-prod-0001-124733793621-us-gov-west-1.s3.us-gov-west-1.amazonaws.com/s3fs-public/2024-09/ER20-5261%20Fact%20Sheet.pdf?VersionId=malAixSQQM3mWCRiaVaxY8wLdI0jE1PX Fact Sheet]

Latest revision as of 21:47, 14 October 2024

Sediment Porewater Dialysis Passive Samplers for Inorganics (Peepers)

Sediment porewater dialysis passive samplers, also known as “peepers,” are sampling devices that allow the measurement of dissolved inorganic ions in the porewater of a saturated sediment. Peepers function by allowing freely-dissolved ions in sediment porewater to diffuse across a micro-porous membrane towards water contained in an isolated compartment that has been inserted into sediment. Once retrieved after a deployment period, the resulting sample obtained can provide concentrations of freely-dissolved inorganic constituents in sediment, which provides measurements that can be used for understanding contaminant fate and risk. Peepers can also be used in the same manner in surface water, although this article is focused on the use of peepers in sediment.

Related Article(s):


Contributor(s):

  • Florent Risacher, M.Sc.
  • Jason Conder, Ph.D.

Key Resource(s):

  • A review of peeper passive sampling approaches to measure the availability of inorganics in sediment porewater[1]
  • Best Practices User’s Guide: Standardizing Sediment Porewater Passive Samplers for Inorganic Constituents of Concern[2]

Introduction

Biologically available inorganic constituents associated with sediment toxicity can be quantified by measuring the freely-dissolved fraction of contaminants in the porewater[3][4]. Classical sediment porewater analysis usually consists of collecting large volumes of bulk sediments which are then mechanically squeezed or centrifuged to produce a supernatant, or suction of porewater from intact sediment, followed by filtration and collection[5]. The extraction and measurement processes present challenges due to the heterogeneity of sediments, physical disturbance, high reactivity of some complexes, and interaction between the solid and dissolved phases, which can impact the measured concentration of dissolved inorganics[6]. For example, sampling disturbance can affect redox conditions[7][8], which can lead to under or over representation of inorganic chemical concentrations relative to the true dissolved phase concentration in the sediment porewater[9][5].

To address the complications with mechanical porewater sampling, passive sampling approaches for inorganics have been developed to provide a method that has a low impact on the surrounding geochemistry of sediments and sediment porewater, thus enabling more precise measurements of inorganics[4]. Sediment porewater dialysis passive samplers, also known as “peepers,” were developed more than 45 years ago[10] and refinements to the method such as the use of reverse tracers have been made, improving the acceptance of the technology as decision making tool.

Peeper Designs

Figure 1. Conceptual illustration of peeper construction showing (top, left to right) the peeper cap (optional), peeper membrane and peeper chamber, and (bottom) an assembled peeper containing peeper water
Figure 2. Example of Hesslein[10] general peeper design (42 peeper chambers), from USGS
Figure 3. Peeper deployment structure to allow the measurement of metal availability in different sediment layers using five single-chamber peepers (Photo: Geosyntec Consultants)

Peepers (Figure 1) are inert containers with a small volume (typically 1-100 mL) of purified water (“peeper water”) capped with a semi-permeable membrane. Peepers can be manufactured in a wide variety of formats (Figure 2, Figure 3) and deployed in in various ways.

Two designs are commonly used for peepers. Frequently, the designs are close adaptations of the original multi-chamber Hesslein design[10] (Figure 2), which consists of an acrylic sampler body with multiple sample chambers machined into it. Peeper water inside the chambers is separated from the outside environment by a semi-permeable membrane, which is held in place by a top plate fixed to the sampler body using bolts or screws. An alternative design consists of single-chamber peepers constructed using a single sample vial with a membrane secured over the mouth of the vial, as shown in Figure 3, and applied in Teasdale et al.[7], Serbst et al.[11], Thomas and Arthur[12], Passeport et al.[13], and Risacher et al.[2]. The vial is filled with deionized water, and the membrane is held in place using the vial cap or an o-ring. Individual vials are either directly inserted into sediment or are incorporated into a support structure to allow multiple single-chamber peepers to be deployed at once over a given depth profile (Figure 3).

Peepers Preparation, Deployment and Retrieval

Figure 4: Conceptual illustration of peeper passive sampling in a sediment matrix, showing peeper immediately after deployment (top) and after equilibration between the porewater and peeper chamber water (bottom)

Peepers are often prepared in laboratories but are also commercially available in a variety of designs from several suppliers. Peepers are prepared by first cleaning all materials to remove even trace levels of metals before assembly. The water contained inside the peeper is sometimes deoxygenated, and in some cases the peeper is maintained in a deoxygenated atmosphere until deployment[14]. However, recent studies[2] have shown that deoxygenation prior to deployment does not significantly impact sampling results due to oxygen rapidly diffusing out of the peeper during deployment. Once assembled, peepers are usually shipped in a protective bag inside a hard-case cooler for protection.

Peepers are deployed by insertion into sediment for a period of a few days to a few weeks. Insertion into the sediment can be achieved by wading to the location when the water depth is shallow, by using push poles for deeper deployments[2], or by professional divers for the deepest sites. If divers are used, an appropriate boat or ship will be required to accommodate the diver and their equipment. Whichever method is used, peepers should be attached to an anchor or a small buoy to facilitate retrieval at the end of the deployment period.

During deployment, passive sampling is achieved via diffusion of inorganics through the peeper’s semi-permeable membrane, as the enclosed volume of peeper water equilibrates with the surrounding sediment porewater (Figure 4). It is assumed that the peeper insertion does not greatly alter geochemical conditions that affect freely-dissolved inorganics. Additionally, it is assumed that the peeper water equilibrates with freely-dissolved inorganics in sediment in such a way that the concentration of inorganics in the peeper water would be equal to that of the concentration of inorganics in the sediment porewater.

After retrieval, the peepers are brought to the surface and usually preserved until they can be processed. This can be achieved by storing the peepers inside a sealable, airtight bag with either inert gas or oxygen absorbing packets[2]. The peeper water can then be processed by quickly pipetting it into an appropriate sample bottle which usually contains a preservative (e.g., nitric acid for metals). This step is generally conducted in the field. Samples are stored on ice to maintain a temperature of less than 4°C and shipped to an analytical laboratory. The samples are then analyzed for inorganics by standard methods (i.e., USEPA SW-846). The results obtained from the analytical laboratory are then used directly or assessed using the equations below if a reverse tracer is used because deployment time is insufficient for all analytes to reach equilibrium.

Equilibrium Determination (Tracers)

The equilibration period of peepers can last several weeks and depends on deployment conditions, analyte of interest, and peeper design. In many cases, it is advantageous to use pre-equilibrium methods that can use measurements in peepers deployed for shorter periods to predict concentrations at equilibrium[15].

Although the equilibrium concentration of an analyte in sediment can be evaluated by examining analyte results for peepers deployed for several different amounts of time (i.e., a time series), this is impractical for typical field investigations because it would require several mobilizations to the site to retrieve samplers. Alternately, reverse tracers (referred to as a performance reference compound when used with organic compound passive sampling) can be used to evaluate the percentage of equilibrium reached by a passive sampler.

Thomas and Arthur[12] studied the use of a reverse tracer to estimate percent equilibrium in lab experiments and a field application. They concluded that bromide can be used to estimate concentrations in porewater using measurements obtained before equilibrium is reached. Further studies were also conducted by Risacher et al.[2] showed that lithium can also be used as a tracer for brackish and saline environments. Both studies included a mathematical model for estimating concentrations of ions in external media (C0) based on measured concentrations in the peeper chamber (Cp,t), the elimination rate of the target analyte (K) and the deployment time (t):

Equation 1:      Equation1r.png
Where:
C0 is the freely dissolved concentration of the analyte in the sediment (mg/L or μg/L), sometimes referred to as Cfree
Cp,t is the measured concentration of the analyte in the peeper at time of retrieval (mg/L or μg/L)
K is the elimination rate of the target analyte
t is the deployment time (days)

The elimination rate of the target analyte (K) is calculated using Equation 2:

Equation 2:      Equation2r.png
Where:
K is the elimination rate of the target analyte
Ktracer is the elimination rate of the tracer
D is the free water diffusivity of the analyte (cm2/s)
Dtracer is the free water diffusivity of the tracer (cm2/s)

The elimination rate of the tracer (Ktracer) is calculated using Equation 3:

Equation 3:          Equation3r2.png
Where:
Ktracer is the elimination rate of the tracer
Ctracer,i is the measured initial concentration of the tracer in the peeper prior to deployment (mg/L or μg/L)
Ctracer,t is the measured final concentration of the tracer in the peeper at time of retrieval (mg/L or μg/L)
t is the deployment time (days)

Using this set of equations allows the calculation of the porewater concentration of the analyte prior to its equilibrium with the peeper water. A template for these calculations can be found in the appendix of Risacher et al.[2].

Using Peeper Data at a Sediment Site

Peeper data can be used to enable site specific decision making in a variety of ways. Some of the most common uses for peepers and peeper data are discussed below.

Nature and Extent: Multiple peepers deployed in sediment can help delineate areas of increased metal availability. Peepers are especially helpful for sites that are comprised of coarse, relatively inert materials that may not be conducive to traditional bulk sediment sampling. Because much of the inorganics present in these types of sediments may be associated with the porewater phase rather than the solid phase, peepers can provide a more representative measurement of C0. Additionally, at sites where tidal pumping or groundwater flux may be influencing the nature and extent of inorganics, peepers can provide a distinct advantage to bulk sediment sampling or other point-in-time measurements, as peepers can provide an average measurement that integrates the variability in the hydrodynamic and chemical conditions over time.

Sources and Fate: A considerable advantage to using peepers is that C0 results are expressed as concentration in units of mass per volume (e.g., mg/L), providing a common unit of measurement to compare across multiple media. For example, synchronous measurements of C0 using peepers deployed in both surface water and sediment can elucidate the potential flux of inorganics from sediment to surface water. Paired measurements of both C0 and bulk metals in sediment can also allow site specific sediment-porewater partition coefficients to be calculated. These values can be useful in understanding and predicting contaminant fate, especially in situations where the potential dissolution of metals from sediment are critical to predict, such as when sediment is dredged.

Direct Toxicity to Aquatic Life: Peepers are frequently used to understand the potential direct toxicity to aquatic life, such as benthic invertebrates and fish. A C0 measurement obtained from a peeper deployed in sediment (in situ) or surface water (ex situ), can be compared to toxicological benchmarks for aquatic life to understand the potential toxicity to aquatic life and to set remediation goals[15]. C0 measurements can also be incorporated in more sophisticated approaches, such as the Biotic Ligand Model[16] to understand the potential for toxicity or the need to conduct toxicological testing or ecological evaluations.

Bioaccumulation of Inorganics by Aquatic Life: Peepers can also be used to understand site specific relationship between C0 and concentrations of inorganics in aquatic life. For example, measuring C0 in sediment from which organisms are collected and analyzed can enable the estimation of a site-specific uptake factor. This C0-to-organism uptake factor (or model) can then be applied for a variety of uses, including predicting the concentration of inorganics in other organisms, or estimating a sediment C0 value that would be safe for consumption by wildlife or humans. Because several decades of research have found that the correlation between C0 measurements and bioavailability is usually better than the correlation between measurements of chemicals in bulk sediment and bioavailability, C0-to-organism uptake factors are likely to be more accurate than uptake factors based on bulk sediment testing.

Evaluating Sediment Remediation Efficacy: Passive sampling has been used widely to evaluate the efficacy of remedial actions such as active amendments, thin layer placements, and capping to reduce the availability of contaminants at sediment sites. A particularly powerful approach is to compare baseline (pre-remedy) C0 in sediment to C0 in sediment after the sediment remedy has been applied. Peepers can be used in this context for inorganics, allowing the sediment remedy’s success to be evaluated and monitored in laboratory benchtop remedy evaluations, pilot scale remedy evaluations, and full-scale remediation monitoring.

References

  1. ^ Risacher, F.F., Schneider, H., Drygiannaki, I., Conder, J., Pautler, B.G., and Jackson, A.W., 2023. A Review of Peeper Passive Sampling Approaches to Measure the Availability of Inorganics in Sediment Porewater. Environmental Pollution, 328, Article 121581. doi: 10.1016/j.envpol.2023.121581   Open Access Manuscript
  2. ^ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Risacher, F.F., Nichols, E., Schneider, H., Lawrence, M., Conder, J., Sweett, A., Pautler, B.G., Jackson, W.A., Rosen, G., 2023b. Best Practices User’s Guide: Standardizing Sediment Porewater Passive Samplers for Inorganic Constituents of Concern, ESTCP ER20-5261. Project Website   Report.pdf
  3. ^ Conder, J.M., Fuchsman, P.C., Grover, M.M., Magar, V.S., Henning, M.H., 2015. Critical review of mercury SQVs for the protection of benthic invertebrates. Environmental Toxicology and Chemistry, 34(1), pp. 6-21. doi: 10.1002/etc.2769   Open Access Article
  4. ^ 4.0 4.1 Cleveland, D., Brumbaugh, W.G., MacDonald, D.D., 2017. A comparison of four porewater sampling methods for metal mixtures and dissolved organic carbon and the implications for sediment toxicity evaluations. Environmental Toxicology and Chemistry, 36(11), pp. 2906-2915. doi: 10.1002/etc.3884
  5. ^ 5.0 5.1 Gruzalski, J.G., Markwiese, J.T., Carriker, N.E., Rogers, W.J., Vitale, R.J., Thal, D.I., 2016. Pore Water Collection, Analysis and Evolution: The Need for Standardization. In: Reviews of Environmental Contamination and Toxicology, Vol. 237, pp. 37–51. Springer. doi: 10.1007/978-3-319-23573-8_2
  6. ^ Peijnenburg, W.J.G.M., Teasdale, P.R., Reible, D., Mondon, J., Bennett, W.W., Campbell, P.G.C., 2014. Passive Sampling Methods for Contaminated Sediments: State of the Science for Metals. Integrated Environmental Assessment and Management, 10(2), pp. 179–196. doi: 10.1002/ieam.1502   Open Access Article
  7. ^ 7.0 7.1 Teasdale, P.R., Batley, G.E., Apte, S.C., Webster, I.T., 1995. Pore water sampling with sediment peepers. Trends in Analytical Chemistry, 14(6), pp. 250–256. doi: 10.1016/0165-9936(95)91617-2
  8. ^ Schroeder, H., Duester, L., Fabricius, A.L., Ecker, D., Breitung, V., Ternes, T.A., 2020. Sediment water (interface) mobility of metal(loid)s and nutrients under undisturbed conditions and during resuspension. Journal of Hazardous Materials, 394, Article 122543. doi: 10.1016/j.jhazmat.2020.122543   Open Access Article
  9. ^ Wise, D.E., 2009. Sampling techniques for sediment pore water in evaluation of reactive capping efficacy. Master of Science Thesis. University of New Hampshire Scholars’ Repository. 178 pages. Website   Report.pdf
  10. ^ 10.0 10.1 10.2 Hesslein, R.H., 1976. An in situ sampler for close interval pore water studies. Limnology and Oceanography, 21(6), pp. 912-914. doi: 10.4319/lo.1976.21.6.0912   Open Access Article
  11. ^ Serbst, J.R., Burgess, R.M., Kuhn, A., Edwards, P.A., Cantwell, M.G., Pelletier, M.C., Berry, W.J., 2003. Precision of dialysis (peeper) sampling of cadmium in marine sediment interstitial water. Archives of Environmental Contamination and Toxicology, 45(3), pp. 297–305. doi: 10.1007/s00244-003-0114-5
  12. ^ 12.0 12.1 Thomas, B., Arthur, M.A., 2010. Correcting porewater concentration measurements from peepers: Application of a reverse tracer. Limnology and Oceanography: Methods, 8(8), pp. 403–413. doi: 10.4319/lom.2010.8.403   Open Access Article
  13. ^ Passeport, E., Landis, R., Lacrampe-Couloume, G., Lutz, E.J., Erin Mack, E., West, K., Morgan, S., Lollar, B.S., 2016. Sediment Monitored Natural Recovery Evidenced by Compound Specific Isotope Analysis and High-Resolution Pore Water Sampling. Environmental Science and Technology, 50(22), pp. 12197–12204. doi: 10.1021/acs.est.6b02961
  14. ^ Carignan, R., St‐Pierre, S., Gachter, R., 1994. Use of diffusion samplers in oligotrophic lake sediments: Effects of free oxygen in sampler material. Limnology and Oceanography, 39(2), pp. 468-474. doi: 10.4319/lo.1994.39.2.0468   Open Access Article
  15. ^ 15.0 15.1 USEPA, 2017. Laboratory, Field, and Analytical Procedures for Using Passive Sampling in the Evaluation of Contaminated Sediments: User’s Manual. EPA/600/R-16/357.   Report.pdf
  16. ^ Santore, C.R., Toll, E.J., DeForest, K.D., Croteau, K., Baldwin, A., Bergquist, B., McPeek, K., Tobiason, K., and Judd, L.N., 2022. Refining our understanding of metal bioavailability in sediments using information from porewater: Application of a multi-metal BLM as an extension of the Equilibrium Partitioning Sediment Benchmarks. Integrated Environmental Assessment and Management, 18(5), pp. 1335–1347. doi: 10.1002/ieam.4572

See Also